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ASYMPTOTIC BEHAVIOR OF HARMONIC MAPS
AND EXPONENTIALLY HARMONIC FUNCTIONS

DonG Pyo CHi, GUNDON CHOI, AND JEONGWOOK CHANG

ABSTRACT. Let M be a Riemannian manifold with asymptotically
non-negative curvature. We study the asymptotic behavior of the
energy densities of a harmonic map and an exponentially harmonic
function on M. We prove that the energy density of a bounded
harmonic map vanishes at infinity when the target is a Cartan-
Hadamard manifold. Also we prove that the energy density of a
bounded exponentially harmonic function vanishes at infinity.

1. Introduction

Liouville type theorems for Riemannian manifolds have been studied
for a long time. It turned out that they work well especially in the case
of non-negative Ricci curvature of the domain manifold ([3], [4], [6]).
On the other hand, if the domain manifold has negative curvature, they
does not hold in general any more ([1], [2]). The condition of the domain
manifold in this article is in between.

We deal with the manifolds having asymptotically non-negative Ricci
curvature as the domain manifolds. Precisely, let M be a complete non-
compact Riemannian manifold and zg be a point in M. Denote r by
the distance function of M from zy. Then M has asymptotically non-
negative Ricci curvature is defined that Ricps(z), the Ricci curvature
of M, satisfies that Ricps(z) > —k(r(z)), where k : R™ U {0} - R" is
a non-increasing function with lim, ., k(r) = 0. Note that we impose
no restriction, even for the decaying rate of the Ricci curvature, in the
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interior of the domain manifolds. The key results of this paper are the
followings.

THEOREM 1.1. Let M be a complete non-compact Riemannian mani-
fold with asymptotically non-negative Ricci curvature, and N be a com-
plete simply connected Riemannian manifold of non-positive sectional
curvature. Then for every harmonic map u : M — N such that the
image of u Is contained in a compact subset of N, |Vul|(z) — 0 as
r(x) — o0o.

Next, we prove the similar theorem for exponentially harmonic func-
tions. The notion of exponentially harmonic maps was first posed by
J. Eells. The exponential energy of a map ¢ : (M, g) — (N, h) is defined
by

E(¢) = / el981*/2qyol,
M

and ¢ is exponentially harmonic if it is a smooth extremal of the exponen-
tial energy functional £. But in the case of exponentially harmonic func-
tions, as we can see in [6], the sectional curvature of the domain manifold
should be controlled to get a proper result. Asymptotically non-negative
sectional curvature is similarly defined as the following: M is said to
have asymptotically non-negative sectional curvature if there is a non-
increasing function k : Rt U {0} — R with lim, ., k(r) = 0 such that
the sectional curvature of M, Secys(x) satisfies Secyr(z) > —k(r(x)).

THEOREM 1.2. Let M be a complete non-compact Riemannian man-
ifold such that M has asymptotically non-negative sectional curvature.
If ¢ : M — R is a bounded exponentially harmonic function, then V|
vanishes at infinity.

Both of Theorem 1.1 and Theorem 1.2 were proved in the case that M
has non-negative Ricci curvature and non-negative sectional curvature in
[3] and [6] respectively. In fact, they proved in those papers that the en-
ergy densities are constantly 0, hence the maps are constant. But in our
case, the classical Liouville theorem cannot be expected. The bounded
harmonic functions on a connected sum of S"~! x [0,00)’s (smoothing
at 0 in any way) would be the counterexamples.

But in Theorem 3.2, we prove that asymptotically constant bounded
harmonic maps should be constant on M.
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2. Preliminaries

To make this article self-contained, we recall the basic tensor formulas
which are used in this article.

Choose local orthonormal frames {e,} in a neighborhood of z € M
and {f;} in a neighborhood of u(z) € N. Let {6,} and {w;} be the dual
coframes of {e, } and {f;} respectively. The connection forms {6,4} and
{wi;} are defined by

6o, = 0ag A0, fap + 050 =0,
B

dwi = E Wiy A Wy, Wij + Wiz = 0.
J

Define u;, by the equation
wrw; = Zuiaeaa
(o4

and

e(u) =Y ug,
i,

is the energy density of u. The covariant derivatives u;,s is defined by
the equation

Zuiageg = duia + Zujau*wﬁ -+ Zuiﬂ95a.
B J B

Then u is harmonic if and only if Y u;nq = 0 for all 1.
The Bochner type formula for a harmonic map u is given by
(2.1)

1 .
§A€(U) = Z U?ag - Z ngluiaujﬁukaulﬁ + Z ch%umuw,
i’a,lB i7j7k7l7a7ﬁ a’ﬁii

where R[J,; is the curvature tensor of N and Ricl; is the Ricci tensor
of M.

Let f be any smooth function defined on N. Then for a harmonic
map u,

(2.2) A(fou) = fijialja.
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For the exponentially harmonic functions, let Q¥ (@) = 69 + ¢;¢;.
Due to Duc and Eells ([5]), ¢ is an ezponentially harmonic function if

> Q@) =0.

Applying V. to the above equation, we have

Z(QM (@) dijk + 20:djr0i5) = 0.
%]
Since
¢ij = d)ji and ¢ijk - ¢ilcj = _¢lRiljk,

we have the Bochner type formula for an exponentially harmonic func-
tion,

Z QYei; =2 Z QY Gk + Dridrs)

0g ik
=2 Z Qij(z SrdiRijk + Pijudr)
ik I
+2) ¢f+2 > bididrio;
ik kving
=2 QUrhRijk—4 ) bid;brid;
ikl ki
+2D R +2) | ididrits
i,k k,i,j
i 1
=2 Y QUrdiRijk + 2|Vde|* — =|de|’.
ikl 2

For a function f on R, we have
(2.3) QY(f o d)i; = QI (f"didb; + f'biz) = (e +€?).
3. Asymptotic behavior of harmonic maps

For an arbitrary point z € M, let 2a be the distance from zo to z
and v : {0,2a] — M be a geodesic with v(0) = zy and y(2a) = 2. Now
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consider the ball B,(a) around z with the radius a. By the triangle
inequality, the distance between zg and each point in the ball is greater
than a, which means that the Ricci curvature has a lower bound —k(a)
in the ball. Denote s by the distance function of M from 2. For the
target manifold IV, let yo € N lie outside u(M) and p denote the distance
function of N from yg. Since u has a bounded image in N, we can take
b > 0 such that b > sup{p(u(z))|z € By(2q)(a)}, for all z € M. Also we
have a lower bound # > 0 such that 8 < inf{b* — p?ou(z)|z € B,(2q)(a)}
for all z € M. Note that b and § are independent of z € M. Now take
a function ® in B,(a) such that

(a2 _ sZ)ZIvu|2

e = (b2 —p2ou)?

® is actually defined in the moving balls. But it is essentially the same
function as appeared in [3] if we regard z € M above as a fixed point,
so we can use similar calculation as in [3] by considering that —k(a)
is the lower bound of the Ricci curvature in B,(a), which is shown in
Proposition 3.1. But in order to prove the theorem we should analyze
the result in other way. From now on, we will use B.(24)(a) instead of
B.(a).

PROPOSITION 3.1. Let M and N be the same as in Theorem 1.1.
And let w: M — N be a harmonic map whose image is contained in a
compact subset of N. Then in B3, (a),

k(a)(a® — s?)° a? (a® — s*)(1 + k(a)a)
<I><Cmmax{ b2 —p2ou b2 —p2ou’ b2 —p2ou ’
a’b?
(b2 — p? ou)2} at &

where & is a maximum point of ® in B, (24)(a) and Cp, is a constant
depending only on the dimension of M.

Proof. Since ® vanishes on the boundary of B.(2,)(a), ® assumes its
maximum at a point Z in the interior of the ball. By the maximum
principle, at the point Z we have

Ve =0,
Ad <0
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They are actually calculated as
—2ds? N dVul?  2d(p? ou)

(3.1) 0=

a2 —s2  |Vu2 b2 -pPou’
—2As? 2|ds?|? AlVul?
0> - +
22— 52 (a2-s22 " [Vup
(3.2) _ldVuPP | 28(%0w) | 20d(p* ow)P?

[Vult b2—p2ou | (B2 —plou)?
The following formulas enable us to convert the above into an inequality

not containing the second derivative terms of wu.
First, the equation (3.1) gives

d|Vul2)2 o _4lds?P | 8lds? x |dp?| x|V | 4d(? ou)|?
Vulz | =@ =522 T @@ pPou) | 57— pPou)
The Bochner formula and Schwartz inequality give

AlVul? _ 1|d|Vul?|?
> = — 2k in B .
VuZ =2 [Vl (@) in Byay (@)
And the Hessian comparison theorem with the curvature assumption
implies

As? < Cr(1+k(a)s) in Boy24)(a),
A(p® ou) 2 [Vul”.

Finally applying these estimates to the above inequality (3.2), we can
get the following quadratic inequality with respect to the energy density:

0> —C(1+ k(a)a) 12a?
= (a? — 5?) (a? — 52)2
16ab|V 2
B ab|Vu| |Vu| ~ ka).
(a2 — s?)(b2 — p?ou) (> —p?ou)

And this is followed by the upper bound of ® in terms of s and k(a) up

to multiplying by constant which depends only on the dimension of M.
Precisely,

. (a® = %)% Vul? _ k(a)(a? — s2)? a®
= <
() (b2 — p2 o u)? (x)_C’mmax{ b2 —p2ou = b2 —pPou’
(a? — s2)(1 + k(a)a) a’b? }
b2 —plou T =p2ou)?)lats

Since ®(z) < ®(Z) for all © € B,(24)(a), it completes the proof. O
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Proof of Theorem 1.1. To conclude the result in our case, we should
confine the domain of ® to By24)(5). In By24)(5) the estimate in

Proposition 3.1 still holds and we have a bound a? — s? > g With this
bound we have

(a? — s%)?|Vu)? S a?|Vu|?

®= (b2 —p2ow)? —  4bt

Combining this inequality and Proposition 3.1, we have

) 1 1+k(@a b . a
< - -~ 7 R —
|Vu|* < Cmax {k(a), ' Ba? } in B.(2q) <2),

a’ ’ a?

where C = C,, 4%. Now at every z with r(z) = 2a > 2,

[Vu(z)|2§Cmax{k(T(2z)), r(i)Q’ BTIZZZ)Q}'

Note that the constant C here does not depend on r(z). So we have
that |Vu(z)| — 0 as r(z) — oo. O

It is known that there can be infinitely many bounded harmonic maps
from M to N in general. Now we are interested in finding out how the
asymptotic behavior of v determines properties of u on the whole do-
main. The following theorem tells that if u(z) goes to a constant point
Yo € N as r(z) — oo, then u should be constant. For the sake of com-
pleteness, let us define a parabolic end by an end of M which does not
admit any positive Green’s function satisfying the Neumann boundary
condition on the boundary of the end, and define a nonparabolic end
otherwise.

THEOREM 3.2. Let M, N, and u be the same as in Theorem 1.1. If

lim wu(z)=1yo forsome yg€ N,
r(z)—o0

then v = yg on M. Furthermore, suppose that M has at least one
nonparabolic end. If on each nonparabolic end E of M,

= for some €N,
r(z)—o0, z€F U(JJ) Yo Yo

then u = yg on M.
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Proof. Let f(z) = k(0)p2 o u(z) for z € M, where py (y) =
dist ¥ (y, ¥o). Note that f is bounded since u has a bounded image in N.
By (2.2) and Hessian comparison for Cartan-Hadamard manifold N, we
have Af > 2k(0)|Vu|?. Now consider the function |Vu|? + f on M. By
(2.1),

%A(Ivul2 + f) = —k|Vul® + k(0)|Vul* > 0.

That is, |Vu|? + f is a bounded non-negative subharmonic function
on M. Note that by Theorem 1.1 |Vu|? vanishes at the infinity, so it
is bounded. Hence by the maximum principle, |Vu|? + f attains its
maximum at the infinity of some ends of M. Since |[Vu|? + f = 0 at
the infinity by Theorem 1.1 and our assumption, sup,,[|Vu|? + f] = 0.
Hence |Vu|?> =0 and f = 0 on M as both are non-negative. Therefore
u = const.

Assume that M has at least one nonparabolic end, and lim,.(z)—, oo u(z)
= yo only on the nonparabolic ends. We claim that |Vu|? + f has its
maximum at the infinity of a nonparabolic end unless it is constant. In
fact, by the same argument in (8], the maximum cannot be attained
at the infinity of a parabolic end unless it is constant. Namely other-
wise, maxs[|Vu|? + f] — [|[Vu]? + f] will be a positive superharmonic
function on the parabolic end attaining its minimum at the infinity.
But a parabolic end does not admit such a function ([7]). It is a con-
tradiction. So |Vu|? + f attains its maximum at the infinity of some
nonparabolic ends. But f = 0 at the infinity of every nonparabolic end,
so supps[|[Vul? + f] = 0, i.e., [Vu|? + f = 0. Hence u = const. O

Now if we impose that M has finite volume, then we can recover a
classical Liouville type theorem. Before we state the theorem, recall that
the following special case of theorems in [9].

ProrosiTION 3.3. Let uw be a non-negative smooth subharmonic
function on M. Then |, M u? = 00, unless u is a constant function.

Proof. See [9]. O

THEOREM 3.4. Let M, N, and u be the same as in Theorem 1.1.
Suppose that M has finite volume. Then u = const on M.
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Proof. Let k1, ko be two positive constants satisfying k(0) < k1 < k2.
For g € M, define f; = n,-pi(mo) ou. Then we have

%Aqvuﬁ +f) = —k|Vul? + k| Val® > 0, for i = 1,2.

Hence |Vu|? + f; is non-negative subharmonic functions on M. On the
other hand, since |Vu|? + f; is bounded,

/ [Vul? + fi2dVol
M

< max|[|Vu|? + fi]z/ dVol
M M
< oQ.
So by Proposition 3.3, we have
|Vu|? + f; = C;, for some non-negative constants C;.
By subtracting, we have
(K2 — K1)p sy 0 u=Co — Ci,

ie.,
Pl ou= G-G
U(Zo) - K;2 - K1 *
Since 2,y © u(xo) = 0, we have pZ, , ) ou = 0. Hence u(z) = u(zo) for

all z € M. 4

4. Asymptotic behavior of exponentially harmonic functions

Here the situation is similar to the case of Theorem 1.1. Again, for
an arbitrary point z € M, let 2a be the distance from zy to z and
v : [0,2a] — M be a geodesic with v(0) = zo and v(2a) = z. Take
the ball B,(24)(a) around y(2a) with the radius a. Then the sectional
curvature has a lower bound —k(a) in the ball. Denote s by the distance
function of M from v(2a). Consider a function F' in B (4 (a) such that

(a® — s*)*|Vg|?
b2 — ¢2 ’

where b is a constant with b > 3 maxy, |¢|. Note that we can take b such
that b2 > ¢2 + 3 for some constant 8 > 0 also.

F=
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Proof of Theorem 1.2. Let T be a maximum point of F'. Then by the
maximum principle, we have

VF(z) =0,
Q" F;;(z) < 0.

And they are

—2ds” L %9 d(¢%)

(4.1) 0= a2 — g2 e(4) + b2 — 2’
—2Q9(s%);;  2QY(s%)i(s?); | QYe(9)i;
02 aZ —s2 (a2 — s2)2 + e(9)
iJ . . I (H2Y. . T A2Y. (H2) .
(4.2) _ Q 6(3((@2;:(@3 n %2 (_¢¢)2Z] n Q(b(2¢_);(2¢;2)]'

Now we will replace all the terms including Q% in the above inequality
(4.2) by the next four formulas. First we have

QY (¢%)i; = QY (2¢:; + 20¢:5) = 2Q9 ¢:d; > 2(e(d) + e(9)?),

and

Qijnmj = |dn|® + (¢mi)2 for a function 7.

The Hessian comparison under the sectional curvature condition gives
QijDijs2 < Crn(1 +k(a)s)(1+e(d)) in Byaa (a).

With the curvature assumption again we have the following Bochner
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type formula for exponentially harmonic functions in B.2q)(a):

Y QYe(d)i; =2 QY (Sriidn + Dridis)

43 5,k
=2 QY(>_ drdiRujk + bijudr)
i7k z
2 Bhi 2> bididridk;
ik Py
=2 Z Q" pry Rirjp — 4 Z i0; PriPr;
1,7:k,l k,i,j
+2) G2 bididrides
ik kg

= 2i§lQij¢k¢lRiljk +2|Vde[* — %|de(¢)[2
> _ok(a)e(g) + 1O |de(@)

2¢(¢) 2

In the above, l—dﬂgﬂﬁ is a bad term. But from (4.1) we have

[de(o)|? < 1652 N 4¢%e(¢)
e(@) T (a?-s%)2 (B2 —¢?)%
and by the choice of b, we have

¢2
s

<UL
g

So it is dominated by

de(B) _ 868 | e(9)’
2 - AR )

As combining all these estimates we can get

= e(9)? 1+ k(a s2 2
02 Cm bz(q_ﬁ)qu - e(¢)( a? _(838 T (a2 — s2)2 + (a2 — 82)82(b2 _ ¢2))
1+ k(a)s s? s?
h ( a2 — §2 + (a? — 52)2 + (a2 — s2)2(b% — ¢?) +k(a)).
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This also gives the following bound of F' at Z and hence at every point
in B'y(2a) (a);

2 2\2|T 2 .
F=(a (bzs_)¢|2v)¢| SCmax{a3+5, a?, 1, a* k(a)}.

To confine the domain of F' to B q)(5) gives us a bound

(a2 _ 82)2|v¢|2 S a4 v 9
wog) Cap o
This implies
1 1 a
2 -3 -2 i
|Vl ngax{a 2, a °, prE k(a)} n Bv(2a)(§)’

where C = C(m, b, 3) is a constant. Since we are interested in the only
asymptotic behavior, for simplicity, assume that 7(z) > 2. Then we have

Vo) < cmax {yfk("S). /7

hence [V#(2)|?2 — 0 as r(z) goes to co. O
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