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INEQUALITIES FOR THE HILBERT TRANSFORM OF
FUNCTIONS WHOSE DERIVATIVES ARE CONVEX

S. S. DRAGOMIR

ABSTRACT. Using the well known Hermite-Hadamard integral in-
equality for convex functions, some inequalities for the finite Hilbert
transform of functions whose first derivatives are convex are estab-
lished. Some numerical experiments are performed as well.

1. Introduction

Let = (—1,1) where 1 < p < 00, the usual £P-space with respect to
the Lebesgue measure A restricted to the open interval ) will be denoted
by £P ().

We define a linear operator T' (see [24]) from the vector space £! ()
into the vector space of all \-measurable functions on £} as follows. Let
fe £t (Q). The Cauchy principle value

1 f( t—¢e
(1) ;PV 17—t T_lslﬁ)l[/ /+e]77’f—t

exists for A-almost every ¢ € €.

We denote the left-hand side of (1.1) by (T'f) (t) for each t € €2 for
which (T'f)(t) exists. The so-defined function T'f, which we call the
finite Hilbert Transform of f, is defined A-almost everywhere on {2 and
is A-measurable; (see for example [1, Theorem 8.1.5]). The resulting
linear operator T will be called the finite Hilbert transform operator or
Cauchy kernel operator.

It is known that £ () is not invariant under T', namely, T (£! () ¢
£1(Q) [17, Proof of Theorem 1 (b)].

The following basic results are well known and their proofs may be
found in Propositions 8.1.9 and 8.2.1 of [1] respectively.
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THEOREM 1. (M. Riesz) Let 1 < p < oo. Then T (£F (Q)) C £° ()
and the linear operator

T,: f TS, f € £ (Q)
on £P () is continuous.

THEOREM 2. (Parseval) Let 1 < p < o0 and ¢ = z%' Then

1
(1.2) / (fTq+ gTf)dr=0

-1
for every f € £ (2) and g € £7(9).

We introduce the following definition.

DEFINITION 1. A function f: Q — C is said to be a-Hdlder continu-
ous (0 < a < 1) in a subinterval Qy of (2 if there exists a constant ¢ > 0,
dependent upon €2, such that

(1.3) F(8) = FO) Sels—t*, s,te.

A function on € is said to be locally a-Holder continuous if it is
a-Holder continuous in every compact subinterval of {2. We denote by
2. (92) the space of all locally a-Hélder continuous functions on Q.

The class of Holder continuous functions on 2 is independent because
the finite Hilbert transform of such a function exists everywhere on 2
(see [15, Section 3.2] or [21, Lemma II.1.1]).

This is in contrast to the A-almost everywhere existence of the finite
Hilbert transform of functions in £* (£2).

There are continuous functions f € £ (2) such that (T'f) (t) does
not exist at some point ¢ € Q. An example is given by the function f
defined by (see [24])

0 if —1<t<0,
f@) =

ooy if 0<t<l

It readily follows that (7'f) (0) does not exist.
In paper [24] it is proved amongst others the following result.

THEOREM 3. (Okada-Elliot) The space £° () N H, () is invariant
under the finite Hilbert transform operator T and the restriction of T
to that space is continuous whenever 1 < p < oco. However, this is not

true when p = 1.
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We consider the finite Hilbert transform on the open interval (a, b)

b
(TF) (a,b;t) = %pv / f ()

T_th, t € (a,b).

The following theorem holds (see [11]).

THEOREM 4. Let f : [a,b] — R be a-H-Hélder continuous on (a, b),
ie.,
(1.4)

If@)—f(s)| <H|t—s|* forallt,s€ (a,b), @€ (0,1), H>0.

Then we have the estimate

(15) (Tf) (a,bit) @ In <b—“—t)

t—a

21-—a

< (b—a)*

for all t € (a,b).

The following result holds for monotonic functions (see [11]).

< %[(t—a)"ﬂb—t)“]g "

THEOREM 5. Let f : [a,b] — R be a monotonic nondecreasing (non-
increasing) function on [a, b]. If the finite Hilbert transform (T f) (a,b,-)
exists in every t € (a,b), then

1 b—t
. bt) > (L) — In{ ——
(16) T5) (@bi0) 2 () 2 O (1)
for all t € (a,b).
Now, if we assume that the mapping f : (a,b) — R is convex on
(a,b), then it is locally Lipschitzian on (a,b) and then the finite Hilbert

transform of f exists in every point ¢ € (a, b).
The following result holds (see [11]).

THEOREM 6. Let f : (a,b) — R be a convex mapping on (a,b). Then

we have

(1.7) % L) (b-t)+/atl(s)ds+f(t)ln (f:;)]
< (Tf)(ab;t)
< %:f(t)ln (f:;)+l(t)(t—a)+/tbl(s)ds],

where 1 (s) € [f_ (s), f ()], s € (a,}).

The following more practical result also holds [11]:
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COROLLARY 1. Let f : (a,b) — R be a differentiable convex function
on (a,b). Then we have the inequality

(1.8) % [f(t) —f@+fF OG-+ f(t)In (?:;)
< (T7)(a,b;t)

< Hrom (D) +so-r0+ 70 6-a

for all t € (a,b).

In this paper, by the use of the well known Hermite-Hadamard in-
tegral inequality for convex functions, we point out some inequalities
for the finite Hilbert transform of functions whose first derivatives are
convex. Some numerical experiments for particular examples of such
functions are performed as well.

For a comprehensive number of results on the numerical approxima-
tion of the Cauchy principal value integrals, see [2]-[10], [13]~[14], [16],
[18){20], [22]-{23], [25]-[27].

2. An inequality on the interval (a,b)

The following result holds.

THEOREM 7. Assume that the differentiable function f : (a,b) — R is
such that f' is convex on (a,b). Then the Hilbert transform (T f) (a,b; -)
exists in every point t € (a,b) and:

21) %[f (f;—b) —f(t;a)] +i7(ri)1n (f%;)

< (Tf)(a,bt)
< o -s@+e-oro+n (=)

for any t € (a,b).

Proof. The existence of the Hilbert transform in each point ¢ € (a, b)
follows by the fact that f is locally Lipschitzian on (a,b).

Since f’ is convex, we have, by the Hermite-Hadamard inequality,
that

22) f<t+r)_T_t/f ()w;f’()
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for all t,7 € (a,b), t # 7, giving
ey (7)< L0SL0 SO s 0
for all t,7 € (a,b), t # T.

Applying the PV in ¢, i.e., 11m (ft 5+ft+e) , we get
(2.4)

t+7 PP - F () PP+ (7)
PV/af< . )d <PVa—th§PV LT g

T — a 2

Since

A (”T)m/ f(t”) d
= a2 (55) 0 (5 (0 (50) -1 (55))]
- 2[(5)- f(x |

i ([ L) [P

= Sm [+ bt
H - = f@+Fb)~Ft+e)]
= SU®-F@+0-a 0],
then by (2.4), we may state that:

e[ (5) (5] = aev [ HE e

7T
—[f ()~ £ (@) + (b~ a) /' (1)

<

for all t € (a,b).
As for the function fo (¢) =1, ¢ € (a,b), we have

(Tf) (a,b;t) = %m(b_t), t e (a,b),

t—a
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then obviously

by —
(2.6) (Tfo) (a,b58) = ~PV / O -fO+1O),

™ T—t
b - —
T a T—1 T t—a
for any t € (a, b).
Finally, by (2.5) and (2.6), we may obtain (3.1). g

The inequality (2.1) in Theorem 7 may be used to obtain different
analytic inequalities for functions f : [a,b] — R whose derivatives are
convex on (a,b) and the Hilbert Transform (T'f) (a, b;-) is known.

For example, the following proposition holds.

PROPOSITION 1. For any a,b € R, a < b and t € (a,b), we have the
inequality:

(2.7) In (f_t) +2 (eﬁ;—t _ egg—t)
E;(b—t)—Ei(a—t)

b—t 1 b—t a—t
< z _ _
< ln( >+2[e e+ (b—a),

IA

t—a
where E; is defined in (2.8).

Proof. If we consider the function f(t) = €*, t € (a,b), then f’ is
convex on (a,b),

T (@bt = S (B b—6) - Ea—1),

where E; is defined by

z t
(2.8) Ei(z) == PV / dr, z€R
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and
1 y f@ b—t
I 0= 1@+ 6-a 0]+ L (221
= -2—17-; [eb—e“+(b~a)et] + %tln <f:2> )
Using (2.1) and dividing by e?, we deduce (2.7). O

The following inequality also holds.

PROPOSITION 2. For any x > 0, we have the inequality

1
(2.9) 2sinh (%x) <Ei(z) < %sinh (x) + 3%

Proof. If in (2.7) we put t = “—“QLb, then we deduce:

2(ef% —e75) < Ei(b;a) — E; (—b;“)

< —[eT—e‘Ter—a] .

If we denote z := b—2ﬂ, then we get

(2.10) 2 (e%z - e—%w) < Ei(z)— E;(-z) < % [¢* —e™® + 22] .

However,
—Ei(-z) = Ei(z),
2(ef*—¢78) = dsinh (%m)
and )
3 (e® — e " +2z) =sinh (z) + z
and then, by (2.10), we deduce (2.9). a

If we choose another function, for instance, f : (a,b) C (0,00) — R,
f@)= —%, then obviously f’ is convex on (a,b), and we may state the
following result as well.

PROPOSITION 3. For any 0 < a < b and t € (a,b), we have the
inequality:

2tG? t? + 24t + G?
<L ——— —— f b
Gz+t2“L_ yr or any t € (a,b),

where A = -“—*2'9, G = Vab and L = —2=2— (the logarithmic mean).

Inb—Ina

(2.11)
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Proof. For the function f: (a,b) = R, f(t) = —%, we have

(TF) (a,b;t) = % [m (2) ~In (f:;)] ,
(%) (50)] - e (=)
4

and

! (t) bt
- 7@+ -0 0]+ T (320
b b

_ —a 1+i iln —t
T 2 |ab 2 7t t—a/’

Now, if we use (2.1), we may write:

4 b—a 1 b—t 1 b 1 b—t
227 (2 )< w2}
m (t+a)(t+b) «t t—a t a mt t—a

which is equivalent to:

4t <lnb—lna t? + ab
(t+a)(t+b) — b—a — 2tab
Using the fact that L := ﬁjﬁ, we deduce (2.11). O

COROLLARY 2. We have the inequality

(2.12) GngG;A.

REMARK 1. The first inequality is a well known result as the following
sequence of inequalities hold

GL<L<LILA

The second inequality is equivalent with:

(2.13) L(a,b) < [A (\/E, \/5)}

which is interesting in itself.

2
3
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3. An inequality on an equidistant division of (a,b)
The following lemma is interesting in itself.

LEMMA 1. Let g : [a,b] — R be a convex function. Then for n > 1
and t,T € [a,b|, t # T, we have the inequality:

(3.1) %gg[t—%—(i-l—%)-t;’r]

1=0

it/t g(u)du

n—

-2%21 [g(t—l—i-v_;t)+g(t+(i+1)-T—;E>].

7=

IA

IN

Proof. Consider the equidistant partitioning of [t, 7] (if ¢ < 7) or [r, ]
(if T < t) given by

T—1

(3.2) E,:z;,=t+1- , 1=0,n.

Then, applying the Hermite-Hadamard inequality, we may write that:

g <x1 + x1+1> < 1 / g (U) du S g (xz) + g (xl‘i‘l)
2 Tiv1 — T Jy 2

1

ie.,

1\ t—7 n Tit+1
A <
g<t+<z+2) - >_ 'r——t/m g (u)du
1 T

IN
[\]]
@
AN
o~
+
o~
S|
[
~
.+_
Q
TN
o~
+
—~
o,
+
—
o —
\‘
|
o
o~

Dividing by n and summing over i from 0 to n—1, we deduce the desired
inequality (3.1). O

The following generalization of Theorem 7 holds.
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THEOREM 8. Assume that f : (a,b) — R fulfills the hypothesis of
Theorem 7. Then for all n > 1, we have the double inequality:

n—1
(3.3) bn_waz [f;t— (z+—;-) -t;a,t+ <2+%) %}

=0

L0, (2=

e t—a
(Tf) (a,b;)
fO)=f(a)+f (t)(b—a)
2nm

n—1

t—a
i=1

IA

IA

for any t € (a,b), where [f;c,d| denotes the divided difference ﬂfc:ugﬂ.

Proof. If we write the inequality (3.1) for f/, then we have

(3.4) %gf’[w(ﬁ%)-r;t]

f(r) - f@®)

T—1

%S[f’(thi-T;t) +f’<t+(z‘+1)-TT_tﬂ

=0
. n—1 , Cr—t
f(t)+i=zlf <t+z- - >

+§f’<t+(i+1)-%l>+f’(ﬂ]

1=0
O P Sy 1 (T Pl
o KARAC R D |

since it is obvious that

IA

IA

1
2n

n—2

gf’<t+z‘-T;t> =>f <t+(z‘+1)-TT_t).

=0
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Applying the PV over t, i.e., lim ( el e) to the inequality (3.4),
E—>
we deduce

(3.5) —ZPV/ [t—i—(H— ) T”t}df

a

. py IO =50,

T—1

n—1
< 5;PV/a [f’(t)+f’(7')+2;f’<t+i-

T;t)} dr.

+
&.‘
/:\
+
TN
-~
+
N—
o
-5
L
N—
]
~
N
o~
+
N
-
+
[])
N’
N—’
=
S
o
N—’

N—
o
Sll
o~
N—’
|
~
N
o+ .
+
TN =
-,
+ ) .
NI—= 3|,
N’ N PO

and

b n—1 ,_
PV/,, [f (t)+f’(r)+2;f (m. nt)}df

im (/at_€+/t;> [f’(t) + f'(7) +2§f’ <t+i. T;tﬂ dr

= lim [f'(t)(t~s~a)+f'(t)(b—t—s)—{—f(t—a)—f(a)

e—0+

1 (b) ~ t+8)+22 [f(———)—f(t%—i'a;t)
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+f<t+¢- b:) —f<t+%€>H
= fO-f@+f )00
+2(b—a)Z[f;t—%t;a,t—%-i-?],
then by (3.5) we deduce

(36) b—anz_:l[f’t_< %),t;a’ﬁ_(hL%).b_;_f}

=0
o[ T
3 f (@) + £/(8) (b~ a)
- 2n
b—aa t—a . bt
+ - Z[f;t—z' - ’H—Z'TJ'

i=1
Using the identity (2.6) and the inequality (3.6), we obtain the desired
result (3.3). O

4. The case of nonequidistant partitioning

The following lemma holds.

LEMMA 2. Let g : [a,b] — R be a convex function on [a,b] and
L7 Ela,b) witht # 7. IF0 =Xy <X\ < -+ < A1 < A\ = 1, then we
have the inequality:

n—1
_ ‘ Ai + Aig1 Ai + Aig1
4 3 0 Az)g[(l P 2R

1 T
<
< ’T—t/ g (u) du

3 Z (Air1 = A) {g[(T = M)t + ]+ g [(1 — Aipa) t+ A 7]}

FAN

Proof. Consider the partitioning of [¢,7] (if t < 7) or [1,¢] (if T < t)
given by
I, :z; = (1—)\i)t+)\iT, (Z=W) .
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Then, obviously,

T; + Tiq1 Ai + A1 A 4 Aig1
—_—=(1- t
2 ( 2 + 2

-7, (i=0,n—1)

and

Ti+1 — Ty = (7‘ — t) ()‘i—i—l — )\z), (Z - m) .
Applying the Hermite-Hadamard inequality on [z;, z;i41) (i = 0,n — 1),
we may write that

g [(1 A +2)\i+1> N +2)\i+1 _T]

1 Tit1
< (T —1) Nig1 — M) /xz g (u)du

< % {g[(1 = M) t+ Air] + g [(1 = Nig1) ¢+ Aisar])

for any i = 0,n — 1.
If we multiply with A;;1 — A; > 0 and sum over 7 from 0 to n — 1, we
deduce the desired inequality (4.1). O

The following theorem holds.

THEOREM 9. Assume that f : (a,b) — R fulfills the hypothesis of
Theorem 7. Then foralln > 1,and0 = Ag < A1 < -+ < Aj1 < Ay = 1,
we have the inequality

n—1
(42) f(t)III(b—t)+b;a2()\z+1—)\l)

s t—a pard

x{f; (1_)\i+)\i+1>t+)\i+)\i+1 b,

2 2

Ai F Aig1 Ai + Aig1
(1 5 ) t+ 5 a}

IN

(Tf)(a,b;t)
% M=a)f (t) + (1= da1) [F () = £ (a)]}
b—a n—1

o= D Qagr = M) [F; (L= A t+ A, (1= X) t + Nial
=0

L0, (22)
iy —a

IA

+
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for any t € (a,b).

Proof. If we write the inequality (4.1) for f’, then we have

n—1 Ai + Aix1 i + )‘i—i—l
(4.3) g i+1 I:(l — 5 ) t+ 5 T
< f-f®)
= p—
n—1
< %Z(Ai+l z){f[l— t+)\7']+f[(]___ z+1)t+)\z+17']}
=0 _
n-—1
= % [/\1f' @)+ D Cipr = X) £ 1A= M)t + A
=1

n—2
+Z 1= ) P 1A = Man) £+ Agrr] + (L= Aac) f (T)]

=

A’ (1) + Z i1 = M) 1A = X t+ Air]

1

1

2
n—1

+Z()‘z_/\z l)f[(l_/\)t+)‘7]+(l- n— l)f(T)J

=1

-1
1
= 5[)\1f +Z i1 "I = X) t+ A7)

+(1 =) f (T)]-

. . . t—e b . .
Applying the PV over t, i.e., 61_1)1(1)1_}_ ( L=+ +E) to the inequality (4.3)
we deduce

n—1

’ At A Ai+ X
44) Y 0w a Py [ | (1225 )y 2 gy

=0
< Pv/b—f(TT):f(t)dT
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n—1 b
S % |:)\1 (b—a)f’(t) +z(x\i+1 —_ )\z)PV/ f,[(l ‘—)\i)t-l-)\iT]dT
i=1 a
L0 (O - F(@) |
Since
b . , , )
PV/ fl ‘:(1 _ )\1, +2/\z+1> t+ )\1, +2/\’L+1 . 7_1| dT
_ 2 Ai + Aig1 Ai + Aig1
N+ i (f [(1 2 )t+ 2 b}
Ai + A1 A + Aigt
(e )
= (b-a) [f; (1 - Ai%iﬂ) tr 2R,
2 2
Ai + i1 Ai + A1
(1 — 5 ) t+ 2 . ail
and
b
PV/ = X)t+ M) dr
= (b—a)[f; (1 = X))t 4 Xib, (1 = Xi) t + Aia]
then by (4.4) we deduce the desired inequality (4.2). a

REMARK 2. It is obvious that for \; = £ (i = 0,n) , we recapture the
inequality (3.3).

The following corollary also holds.
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COROLLARY 3. Assume that f : (a,b) — R fulfills the hypothesis of
Theorem 7. Then for n > 1 we have:

(4.5) £ In (E)

i t—a

b—a 1 1 1 1 1
+ . [éﬁ__l{f;<l_§;>t+%b’(l_ﬁ>t+%a:|:|

n—1
b—a 1 3 3 3 3
— — - — 1-— - -
+ T = 2n—1|:f’ (1 2n—z> t+ on—i b’ ( 2n—1) t+ on—i a:l

IN A
~~
==
—_
—~~
S
| o
2 o
R
il
—_
o~
~—

1 1 1 1
X [f5 (1 - 2n—1> t+ 2n—1b’ (1 - 2n—l>t+ 2n—1a:|

n—1

b—a 1
+3- T ; on—i+1

1 1 1 1
i1 — . — — AR .
X ,:f’ ( 2n—z) t+ on—i b, (1 2n—z) + n—i a]
m t—a

for any t € (a,b).

The proof follows by Theorem 9 applied for Ay =0, A; = 22—;, i=1,n.
We omit the details.
5. Numerical experiments

Let us define the following bounds

b—a~ 1Y - 1) b—t
R O R G

=1

ROMEED
T —a
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called the lower bound and

Un(f,a,b;t) . = f(b)_f(a)‘+‘fl(t)(b—a,)

2nm

b—a 2 t—a b—t
RS - i

i=1

0, (22

m t—a
called the upper bound for the Finite Hilbert Transform (T f) (a,b;t) (as
shown by the inequality (3.3)). We also define the left error LEr,(f,a,
b; t)
LEry, (f,a,b;t) == (Tf) (a,b;t) — Ln (f,0,b;) 2 0
and the right error RET,, (f,a,b;t)
REr, (f,a,b5t) := Un (f,0,b51) = (Tf) (a,b;¢) 2 0

and will investigate them numerically for different functions f and nat-
ural numbers n.

If we consider the function f : [-1,1] — R, f (z) := exp(z), then the
exact finite Hilbert transform provided by Maple 6, is

(Tf)(—1,1;t) = (exp(t) Ei(1 — t) — exp(t) Ei(—t — 1))/m,t € [-1,1].

The plot of the Hilbert transform is embodied in Figure 1.

If we plot in the same system of co-ordinates LEr, (f,a,b;t) and
REr, (f,a,b;t), for n = 100, then we observe that the distance between
the exact Hilbert transform and its lower bound is smaller than the
distance between the same Hilbert transform and its upper bound (see
Figure 2). A theoretical investigation on this fact will be conducted in
[12].

If we now consider the polynomial function f: [-1,1] —» R, f(z) =
25, then its derivative is a convex function on [—1,1]. Its Hilbert trans-
form is

(Tf) (—=1,1;¢) = (2t*+2/5—t° In(t+1)+¢° In(1—t)+2/3¢%) /7, t € [-1,1]

and the plot is embodied in Figure 3.

If we plot in the same system of co-ordinates LEr, (f,a,b;t) and
REr, (f,a,b;t), for n = 1000, then we observe that the distance between
the exact Hilbert transform and its lower bound is smaller than the
distance between the same Hilbert transform and its upper bound (see
Figure 4).
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