DOI QR코드

DOI QR Code

Small Sample Characteristics of Generalized Estimating Equations for Categorical Repeated Measurements

범주형 반복측정자료를 위한 일반화 추정방정식의 소표본 특성

  • Published : 2002.09.01

Abstract

Liang and Zeger proposed generalized estimating equations(GEE) for analyzing repeated data which is discrete or continuous. GEE model can be extended to model for repeated categorical data and its estimator has asymptotic multivariate normal distribution in large sample sizes. But GEE is based on large sample asymptotic theory. In this paper, we study the properties of GEE estimators for repeated ordinal data in small sample sizes. We generate ordinal repeated measurements for two groups using two methods. Through Monte Carlo simulation studies we investigate the empirical type 1 error rates, powers, relative efficiencies of the GEE estimators, the effect of unequal sample size of two groups, and the performance of variance estimators for polytomous ordinal response variables, especially in small sample sizes.

Liang과 Zeger는 이산형 혹은 연속형 반복측정자료를 분석하기 위한 일반화 추정방정식 (GEE)을 제안하였다 GEE모형은 범주형 반복측정자료의 모형으로 확장될 수 있으며, 이 GEE추정량은 대표본인 경우 다변량 정규분포를 따른다. 그러나 GEE는 대표본근사이론에 기초한다. 본 논문에서는 소표본인 경우 반복 측정된 순서자료에 대한 GEE추정량의 성질을 연구한다. 우리는 두가지 방법을 사용하여 두그룹의 반복 측정된 순서자료를 생성하며 모의실험을 통하여 소표본인 경우 여러 개 범주를 갖는 순서반응 자료에 대하여 GEE추정량의 1종 오류율, 검정력, 상대효율, 두 그룹의 표본크기가 다를 경우 효과, 그리고 분산 추정량의 성질등을 연구한다.

Keywords

References

  1. The American Statistician v.49 no.2 Generating Multivariate Categorical Variates Using the Iterative Proportional Fitting Algorithm Gange, S. J. https://doi.org/10.2307/2684626
  2. Communications in Statistics, Part B- Simulation and Computation v.24 Small Sample Characteristics of Generalized Estimating Equations Gunsolley, J. C.;Getchell, C.;Chinchilli, V. M. https://doi.org/10.1080/03610919508813280
  3. Biometrika v.73 no.1 Longitudinal Data Analysis Using Generalized Linear Models Liang, K.;Zeger, S. L. https://doi.org/10.1093/biomet/73.1.13
  4. Biometrika v.78 no.1 Generalized Estimating Equations for Correlated Binary Data : Using the Odds Ratio as a Measure of Association Lipsitz, S. R.;Laird, N. M.;Harrington, D. P. https://doi.org/10.1093/biomet/78.1.153
  5. Statistics in Medicine v.13 Analysis of Repeated Categorical Data Using Generalized Estimating Equations Lipsitz, S. R.;Kim, K.;Zhao, L. https://doi.org/10.1002/sim.4780131106
  6. Biometrics v.50 Performance of Generalized Estimating Equations in Practical Situations Lipsitz, S. R.;Fitzmaurice, G. M.;Orav, E. J.;Laird, N. M. https://doi.org/10.2307/2533218
  7. The Annals of Statistics v.11 no.1 Quasi-likelihood Function McCullagh, P. https://doi.org/10.1214/aos/1176346056
  8. Biometrics v.49 The Analysis of Longitudinal Polytomous Data : Generalized Estimating Equations and Connections with Weighted Least Squares Miller, M. E.;Davis, C. S.;Landis, J. R. https://doi.org/10.2307/2532245
  9. Biometrics v.44 Correlated Binary Regression with Covariates Specific to Each Binary Observation Prentice, R. L. https://doi.org/10.2307/2531733
  10. Communications in Statistics, Part B - Simulation and Computation v.27 ANOVA for Repeated Ordinal Data with Small Sample Size? A Comparison of ANOVA, MANOVA, WLS and GEE Methods by Simulation Stiger, T. R.;Kosinski, A. S.;Barnhart, H. X.;Kleinbaum, D. G. https://doi.org/10.1080/03610919808813485
  11. Biometrika v.61 no.3 Quasi-likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method Wedderburn, R. W. M.
  12. Biometrics v.42 Longitudinal Data Analysis for Discrete and Continuous Outcomes Zeger, S. L.;Liang, K. https://doi.org/10.2307/2531248

Cited by

  1. Comparison of GEE Estimators Using Imputation Methods vol.16, pp.2, 2003, https://doi.org/10.5351/KJAS.2003.16.2.407