DOI QR코드

DOI QR Code

A Confirmation of Identified Multiple Outliers and Leverage Points in Linear Model

다중 선형 모형에서 식별된 다중 이상점과 다중 지렛점의 재확인 방법에 대한 연구

  • 유종영 (용인대학교 컴퓨터정보학부) ;
  • 안기수 (동남보건대학 컴퓨터응용과)
  • Published : 2002.09.01

Abstract

We considered the problem for confirmation of multiple outliers and leverage points. Identification of multiple outliers and leverage points is difficult because of the masking effect and swamping effect. Rousseeuw and van Zomeren(1990) identified multiple outliers and leverage points by using the Least Median of Squares and Minimum Value of Ellipsoids which are high-breakdown robust estimators. But their methods tend to declare too many observations as extremes. Atkinson(1987) suggested a method for confirming of outliers and Fung(1993) pointed out Atkinson method's limitation and proposed another method by using the add-back model. But we analyzed that Fung's method is affected by adjacent effect. In this thesis, we proposed one procedure for confirmation of outliers and leverage points and compared three example with Fung's method.

다중 이상점 과 다중 지렛점의 식별은 가장효과(masking effect)와 편승효과(swamping effect)에 영향을 받으므로 어려움이 존재한다. Rousseeuw와 van Zomeren(1990)은 LMS (Least Median of Squares) 회귀방법과 MVE(Minimum Volume Ellipsoid) 통계량을 이용하여 다중 이상점과 다중 지렛점을 식별하였다. 그러나 이들의 방법은 LMS와 MVE의 강한 로버스트성으로 인하여 이상점과 지렛점이 아닌 점들도 이상점과 지렛점으로 식별하는 경향이 있다. Fung(1993)은 식별된 이상점과 지렛점들에 대하여 재확인방법을 제안하였는데 이 방법은 인근효과(adjacent effect)에 영향을 받아 이상점과 지렛점을 식별하는데 문제가 있는 것으로 분석되었다. 본 논문은 이러한 문제점을 지적하고 새로운 방법을 제안하여 식별된 이상점과 지렛점을 재확인하고자 한다.

Keywords

References

  1. Biometrika v.73 no.3 Masking unmasked Atkinson, A. C. https://doi.org/10.1093/biomet/73.3.533
  2. Outliers in Statistical Data(2nd ed) Barnett, V.;Lewis, T.
  3. Statistical Theory and Methodology in Science and Engineering(2nd ed). Brownlee, K. A.
  4. Journal of the American Statistical Association v.88 Unmasking Outliers and Leverage Points: A Confirmation Fung, W. K. https://doi.org/10.2307/2290331
  5. Journal of the Royal Statistical Society, Ser.B. v.54 Identifying Multiple Outliers in Multivariate Data Hadi, A. S.
  6. Journal of American Statistical Association v.75 Procedures for the Identification of Multiple Outliers in Linear Models Hadi, A. S.;Simonoff, J. S.
  7. Technometrics v.26 Location of several outliers in multiple regression data using elemental sets Hawkins, D. M.;Bradu, D.;Kass, G. V. https://doi.org/10.2307/1267545
  8. Journal of American Statistical Association v.79 Least Median of Squares Regression Rousseeuw, P. J. https://doi.org/10.2307/2288718
  9. Mathematical Statistics and applications v.B Multivariate estimation with high breakdown points Rousseeuw, P. J.;W. Grossman(ed.);G. Pflug(ed.);I. Vincze(ed.);W. Wertz(ed.)
  10. Robust Regression and Outlier Detection Rousseeuw, P. J.;Leroy, A. M.
  11. Journal of the American Statistical Association v.75 Unmasking multivariate outliers and leverage points(with comments) Rousseeuw, P. J.;van Zomeren, B. C.