DOI QR코드

DOI QR Code

A Test of the Multivariate Normality Based on Likelihood Functions

가능도 함수를 기초로 한 다변량 정규성 검정

  • Yeo, In-Kwon (Division of Mathematics and Statistical Informatics, Chonbuk National University)
  • 여인권 (전북대학교 자연과학대학 수학통계정보과학부)
  • Published : 2002.09.01

Abstract

The present paper develops a test of the multivariate normality based on nonlinear transformations and the likelihood function. For checking the normality, we test the shape parameter which indexes the family of transformations. A score test and a parametric bootstrap test are used to evaluate the discrepancy between the data and a multivariate normal distribution. In order to compare the performance of our test with the existing tests, a simulation study was carried out for several situations where nuisance parameters have to be estimated. The results showed that the proposed method is superior to the existing methods.

이 논문에서는 비선형 변환과 가능도 함수를 이용하여 다변량 자료의 정규성을 검정하는 방법에 대해 알아본다. 사용된 변환은 변환모수에 따라 여러 가지 형태를 가지는 변환족을 구성하는데 이 변환모수를 검정하여 자료의 정규성을 검정한다. 모수의 검정은 점수함수(score function)을 기초로 이루어지며 표본크기가 적은 경우에도 검정통계량의 분포를 유도하기 위한 모수적 붓스트랩 검정방법이 사용된다. 모의실험 결과 기존의 방법과 검정력을 비교하여 제안된 방법이 검정력이 높은 것으로 나타났다.

Keywords

References

  1. Annals of Statistics v.14 Simulated Power Functions Beran, R. https://doi.org/10.1214/aos/1176349847
  2. Biometrika v.62 Omnibus test contours for departures from normality based on $\sqrt{b_1}$ and $b_2$. Bowman, K. O.;Shenton, B. R.
  3. Journal of the Royal Statistical Society v.B 26 An Analysis of Transformations Box, G. E. P.;Cox, D. R.
  4. Theoretical Statistics Cox, D. R.;Hinkley, D. V.
  5. Biometrika v.58 An Omnibus Test of Normality for Moderate and Large Sample Sizes D'Agostino, R. B. https://doi.org/10.1093/biomet/58.2.341
  6. Biometrika v.60 Tests for departures from normality. Empirical results for the distributions of $b_2$and $\sqrt{b_1}$. D'Agostino, R. B.;Pearson, E. S.
  7. Quaderni dell'Instituto di Statistica v.20 An Empirical study of some tests for multivariate normality Giorgi, G. M.;Fattorini, L.
  8. Applied Statistics v.29 An Alternative Family of Transformations John, J. A.;Draper, N. R. https://doi.org/10.2307/2986305
  9. Distributions in Statistics: Continuous Multivariate Distributions Johnson, N. L.;Kotz, S.
  10. Journal of the American Statistical Association v.68 On Tests for Multivariate Normality Malkovich, J. F.;Afifi, A. A. https://doi.org/10.2307/2284163
  11. Biometrika v.57 Measures of Multivariate Skewness and Kurtosis with Applications Mardia, K. V. https://doi.org/10.1093/biomet/57.3.519
  12. Sankhya v.B 39 On the Maximized Likelihood Function Patefield, W. M.
  13. Birkhauser (Grossohans) Augmenting Shapiro-Wilk Test for Normality Contributions to Applied Statistics Puri, M. L.;Rao, C. R.
  14. Journal of the American Statistical Association v.67 An Approximate Analysis of Variance Test for Normality Shapiro, S. S.;Francia, R. S. https://doi.org/10.2307/2284728
  15. Biometrika v.52 An Analysis of Variance Test for Normality (Complete Samples) Shapiro, S. S.;Wilk, M.B. https://doi.org/10.1093/biomet/52.3-4.591
  16. Convex Transformations of Random Variables van Zwet, W. R.
  17. Technometrics v.17 An Approximate Analysis of Variance Test for Non-normality Suitable for Machine Calculation Weisberg, S.;Bingham, C. https://doi.org/10.2307/1268012
  18. Biometrika v.87 A New Family of Power Transformations to Improve Normality or Symmetry Yeo, I. K.;Johnson, R. A. https://doi.org/10.1093/biomet/87.4.954