Regulation of Intracellular pH by SHC1 in Saccharomyces cerevisiae

효모에서 SHC1 유전자의 이온 농도 조절에 의한 세포내 pH 항상성 유지

  • 하승길 (한림대학교 유전공학과) ;
  • 전준철 (한림대학교 유전공학과) ;
  • 최의열 (한림대학교 유전공학과)
  • Published : 2002.09.01

Abstract

Budding yeasts maintain an effective system to regulate intracellular pH in response to environmental pH fluctuation. In a previous study we reported that SHC1 plays a role in cell growth at alkaline condition, not at acid pH. We constructed a null mutant deleted an entire open reading frame for SHC1. To test whether the retardation in cell growth was caused by the absence of intracellular pH buffering capacity, we measured intracellular pH with a pH-sensitive fluorescent dye, C.SNARE. The intracellular pH of the mutant cell was much higher than that of wild-type cells, indicating that the mutant cells lack some types of buffering capacity. We also investigated the level of $Na^+ and K^+$ content with atomic mass spectroscopy after alkali shock. Wild-type cell showed a higher level of intracellular K^+$ content, whereas there was no difference in $Na^+$ level. The result suggested that K^+$ is more important in the regulation of intracellular pH in yeasts.

출아효모는 주변 환경 pH의 커다란 변화 속에서 적응할 수 있는 효과적인 체계를 지니고 있으며 SHC1 유전자는 알칼리 pH 조건에서 세포의 성장에 필요한 유전자 중에 하나임을 확인하였다. SHC1 유전자의 세포내 pH 조절 기작을 보다 구체적으로 알아보기 위하여 이 유전자가 소실된 돌연변이주를 제조하였다. 성장률의 차이가 나타나는 원인을 세포 내부의 pH 완충능력 결여에 의한 것으로 추측하고 pH 감수성 형광물질인 C.SNARE를 사용하여 외부 pH의 변화에 따른 세포 내부의 pH를 측정하였다. 알칼리 pH 완충효과는 소실 돌연변이의 경우는 야생종 대비 70% 수준을 보였다. 또한 pH 조절에 관여하는 효모세포 내부의 $Na^{+}$$K^{+}$의 농도를 원자흡광계를 사용하여 조사한 바, $K^{+}$ 이온의 경우에는 돌연변이주에 비하여 야생형 세포내에 더 많이 존재하는 것으로 나타났으나 $Na^{+}$ 이온의 경우는 별다른 차이점을 보이지 않았다. 이러한 결과는 $K^{+}$ 이온의 조절이 효모에서 세포내 pH조절 기작에 중요하며 SHC1 유전자는 이 $K^{+}$ 이온의 세포내 농도 유지에 관여하고 있다는 것을 제시해 주었다.

Keywords

References

  1. Ann. Rev. Physiol. v.53 The band 3-related anion exchanger (AE) gene family Alper, S.L. https://doi.org/10.1146/annurev.ph.53.030191.003001
  2. Proton Passage across cell membrane Bock, J.;Marsh, J.
  3. Genes & Develop. v.8 Large-scale analysis of gene expression, protein localization and gene distruption in Saccharomyces cerevisiae Burns N.;B. Grimwade;P. B. Ross-Macdonal;E.Y. Choi;K. Finberg;G.S. Roeder;M. Snyder https://doi.org/10.1101/gad.8.9.1087
  4. A. J. Physiol. v.242 Intracellular pH meadiates action of insulin on glycolysis in frog skeletal muscle Fidelman, M.L.;S.H. Seeholzer;K.B. Walsh;R.D. Moore https://doi.org/10.1152/ajpcell.1982.242.1.C87
  5. Biochem. J. v.296 The $Na^+/H^+$ exchanger: An update on structure, regulation , and cardiac physiology Fliegel, L.;O. Frohlich https://doi.org/10.1042/bj2960273
  6. J. Cell Physiol. v.91 The relations of cycling of intracellular pH to mitosis in the acellular slime mold Phasarum polycephalum Gerson, D. F.;A. C. Burton https://doi.org/10.1002/jcp.1040910214
  7. Mol. Cell. Biochem. v.124 Intracellular pH in Schizosaccharomyces pombe-comparison with Saccharomyces cerevisiae Haworth, R.S.;L. Fligel https://doi.org/10.1007/BF00929205
  8. Biochem. Biophys. Res. Comm. v.255 SHC1, a high pH inducible gene required for growth at alkaline pH in Saccharomyces cerevisiae Hong, S.K.;S.B. Han;E.Y. Choi https://doi.org/10.1006/bbrc.1999.0158
  9. Int. Rev. Cytol. v.123 Molecular biology of the anion exchanger gene family Kopito, R.R. https://doi.org/10.1016/S0074-7696(08)60674-9
  10. Biochimie v.33 On the synthesis of inorganic polyphosphates in Neurospora crassa Kulaev, I.S.;O, Szymona;M.A. Bobyk
  11. Biochm. Biophys. Res. Commun. v.79 The effect of amino acids on growth and phosphate metabolism in a prototrophic yeast strain Ludwig, J.R.;H.S.G. Oliver;C.S. McLaughlin https://doi.org/10.1016/0006-291X(77)90054-7
  12. Biochem. J. v.250 Regulation of internal pH in eukaryotic cells. Madshus, I.H. https://doi.org/10.1042/bj2500001
  13. Intracellular pH: Its Measurement, Regulation, & Utilization in Cellular Functions Moody, W.J. Jr.;Nicciteli, R.(eds.); D.W. Deamer(eds.)
  14. Mol. Cell. Biol. v.19 A novel mechanism of iron homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transport Mulet, J.M.;M.P. Leube;S.J. Kron;G. Rios;G.R. Fink;R. Serano https://doi.org/10.1128/MCB.19.5.3328
  15. FEBS Lett. v.274 Polyphosphate hydrolysis-a protective mechanism against alkaline stress Pick, U.;M. bental;E. Chitlaru;M. Weiss https://doi.org/10.1016/0014-5793(90)81318-I
  16. J. Bac. v.180 A Saccharomyces cerevisiae mutant lacking a $K^+/H^+$ exchanger Ramirez, J.;O. Ramirez;C. Saches;R. Coria;A. Pena
  17. Physiol. Rev. v.61 Intracellular pH Roos, A.;Boron, W.F. https://doi.org/10.1152/physrev.1981.61.2.296
  18. Methods in yeast genetics: A laboratory manual. Sherman, F.;G.R. Fink;J.B. Hicks
  19. Proc. Natl. Acad. Sci. v.79 Gap junctional conductance: comparison of sensitivities to pH and $Ca^{++}$ ions Spray, D.C.;J.H. Sternet;A.L. Harris;M.V.L. Bennet https://doi.org/10.1073/pnas.79.2.441
  20. Intracellular pH: Its Measurement, Regulation, & Utilization in Cellular Functions Steinhardt, R.A.;M. Morisawa;Nicciteli, R.(ed.);D.W. Deamer(ed.)
  21. Nature v.337 Bicarbonate and pHi response Thomas, R.C. https://doi.org/10.1038/337601a0