Velocity measurements in complex flows of non-Newtonian fluids

  • Muller, Susan J. (Department of Chemical Engineering, University of California, Berkeley)
  • 발행 : 2002.09.01

초록

Experimental methods for making quantitative measurements of velocity fields in non-Newtonian fluids are reviewed. Techniques based on light scattering spectroscopy - laser Doppler velocimetry and homodyne light scattering spectroscopy, techniques based on imaging the displacement of markers - including particle image velocimetry and molecular tagging velocimetry, and techniques based on nuclear magnetic resonance imaging are discussed. The special advantages and disadvantages of each method are summarized, and their applications to non-Newtonian flows are briefly reviewed. Example data from each technique are also included.

키워드

참고문헌

  1. Meas. Sci. Technol. v.8 Dynamic ranges of velocity and spatial resolution of particle image velocimetry Adrian, R. J. https://doi.org/10.1088/0957-0233/8/12/003
  2. Fluid Mechanics Measurements (2nd ed.) Adrian, R. J.;R. J. Goldstein(ed.)
  3. Annu. Rev. Fluid Mech. v.23 Particle-Imaging Techniques for Experimental Fluid Mechanics Adrian, R. J. https://doi.org/10.1146/annurev.fl.23.010191.001401
  4. J. Non-Newtonian Fluid Mech. v.60 The sedimentation of a sphere through an elastic fluid. 1. Steady Motion Arigo, M. T.;D. Rajagopalan;N. Shapley;G. H. McKinley https://doi.org/10.1016/0377-0257(95)01379-6
  5. Rheol. Acta v.37 An experimental investigation of negative wakes behind spheres settling in a shearthinning viscoelastic fluid Arigo, M. T.;G. H. McKinley https://doi.org/10.1007/s003970050118
  6. Rheol. Acta v.41 Surfactant-induced effects on turbulent swirling flows Arora, K.;R. Sureshkumar;M. P. Scheiner;J .L. Piper https://doi.org/10.1007/s003970200002
  7. J. Rheol. v.38 An experimental and numerical investigation of a viscoelastic flow around a cylinder Baaijens, F.P.T.;H.P.W. Baaijens;G.W.M. Peters;H.E.H. Meijer https://doi.org/10.1122/1.550518
  8. J. Rheol. v.39 Viscoelastic flow past a confined cylinder of a polyisobutylene solution Baaijens, H.P.W.;G.W.M. Peters;F.P.T. Baaijens;H.E.H. Meijer https://doi.org/10.1122/1.550635
  9. J. Non-Newton Fluid Mech. v.69 Digital particle image velocimetry in flows with nearly closed pathlines: The viscoelastic Taylor-Couette instability Baumert, B. M.;D. Liepmann;S. J. Muller https://doi.org/10.1016/S0377-0257(96)01538-8
  10. J. Rheol. v.40 Molecular orientation of a liquid-crystalline polymer solution in mixed shear-extensional flows Bedford, B. D.;W. R. Burghardt https://doi.org/10.1122/1.550793
  11. J. Non-Newton Fluid Mech. v.56 Effect of polymer on flow in journal bearings Berker, A.;M. G. Bouldin;S. J. Kleis;W. E. VanArsdale https://doi.org/10.1016/0377-0257(94)01299-W
  12. Dynamic Light Scattering Berne, B. J.;R. Pecora
  13. J. Non-Newton Fluid Mech. v.12 Velocity-fields around spheres and bubbles investigated by Laser-Doppler anemometry Bisgaard, C. https://doi.org/10.1016/0377-0257(83)85003-4
  14. Rheological phenomena in focus Boger, D. V.;K. Walters
  15. Rep. Prog. Phys. v.62 Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids Callaghan, P.T. https://doi.org/10.1088/0034-4885/62/4/003
  16. Principles of Nuclear Magnetic Resonance Microscopy Callaghan, P.T.
  17. Exp. Fluids v.20 Turbulent Expansion Flow Of Low-Molecular-Weight Shear-Thinning Solutions Castro, O. S.;F. T. Pinho https://doi.org/10.1007/BF00190597
  18. Polymer Eng. Sci. v.36 Transport in a twin-screw extruder for the processing of polymers Chiruvella, R. V.;Y. Jaluria;M. V. Karwe;V. Sernas https://doi.org/10.1002/pen.10548
  19. MS thesis, University of California Measurements of Velocity fields of DNA Solutions in Microfluidic Devices Chen, P.H.T.
  20. J. Non-Newton Fluid Mech. v.48 Elastic Instability In Cross-Flow Of Polymer-Solutions Through Periodic Arrays Of Cylinders Chmielewski, C.;K. Jayaraman https://doi.org/10.1016/0377-0257(93)87025-K
  21. Phys. Fluids A v.5 An experimental investigation of vortex motions near surfaces Chu, C. C.;C. T. Wang;C. S. Hsieh https://doi.org/10.1063/1.858650
  22. J. Non-Newtonian Fluid Mech. v.49 Velocity And Stress-Fields Of Polymeric Liquids Flowing In A Periodically Constricted Channel. 1. Experimental Methods And Straight Channel Validations Davidson, D. L.;W. W. Graessley;W. R. Schowalter https://doi.org/10.1016/0377-0257(93)85007-W
  23. J. Non-Newtonian Fluid Mech. v.49 Velocity And Stress-Fields Of Polymeric Liquids Flowing In A Periodically Constricted Channel. 2. Observations Of Non-Newtonian Behavior Davidson, D. L.;W. W. Graessley;W. R. Schowalter https://doi.org/10.1016/0377-0257(93)85008-X
  24. J. Fluid Mech. v.337 Drag reduction by polymer additives in a turbulent pipe flow: Numerical and laboratory experiments DenToonder, J.M.J.;M. A. Hulsen;G.D.C. Kuiken;F.T.M. Nieuwstadt https://doi.org/10.1017/S0022112097004850
  25. J. Non-Newtonian Fluid Mech. v.80 Flow of a viscoelastic fluid between eccentric cylinders: impact on flow stability Dris, I.;E.S.G. Shaqfeh https://doi.org/10.1016/S0377-0257(97)00106-7
  26. Principles and practice of laser-Doppleranemometry(2nd ed.) Durst, F.;A. Melling;J. H. Whitelaw
  27. Phys. Fluids v.11 Wake measurements for flow around a sphere in a viscoelastic fluid Fabris, D.;S. J. Muller;D. Liepmann https://doi.org/10.1063/1.870225
  28. Exp. Fluids v.24 3D holographic PIV with a forward-scattering laser sheet and stereoscopic analysis Fabry, E. P. https://doi.org/10.1007/s003480050148
  29. Exp. Fluids v.23 Low cost, high resolution DPIV for measurement of turbulent fluid flow Fincham, A. M.;G. R. Spedding https://doi.org/10.1007/s003480050135
  30. Annu. Rev. Fluid Mech. v.31 Nuclear Magnetic Resonance as a Tool to Study Flow Fukushima, E. https://doi.org/10.1146/annurev.fluid.31.1.95
  31. Optical Rheometry of Complex Fluids Fuller, G. G.
  32. J. Fluid Mech. v.100 The Measurement Of Velocity-Gradients In Laminar-Flow By Homodyne Light-Scattering Spectroscopy Fuller, G. G.;J. M. Rallison;R. L. Schmidt;L. G. Leal https://doi.org/10.1017/S0022112080001280
  33. Rheol. Acta v.19 Flow Birefringence Of Dilute Polymer-Solutions In Two-Dimensional Flows Fuller, G. G.;L. G. Leal https://doi.org/10.1007/BF01517512
  34. Rheol. Acta v.39 Quantitative NMR velocity imaging of a main-chain liquid crystalline polymer flowing through an abrupt contraction Gentzler, M.;Y. Q. Song;S. J. Muller;J. A. Reimer https://doi.org/10.1007/s003970050001
  35. Chem. Eng. Sci. v.49 Nuclear Magnetic Resonance in Chemical Engineering: Principles and Applications Gladden, L. F. https://doi.org/10.1016/0009-2509(94)00129-4
  36. Meas. Sci. Technol. v.7 Applications of nuclear magnetic resonance imaging in process engineering Gladden, L. F.;P. Alexander https://doi.org/10.1088/0957-0233/7/3/026
  37. Phys. Fluids v.10 Mechanism of elastic instability in Couette flow of polymer solutions: Experiment Groisman, A.;V. Steinberg https://doi.org/10.1063/1.869764
  38. Exp. Fluids v.17 A New Technique For The Experimental-Study of 3rd Velocity-Fields Halloin, V. L.;R. Jottrand https://doi.org/10.1007/BF02412813
  39. Chem. Eng. Commun. v.188 The measurement of the flow around sphere settling in a rectangular box using 3-dimensional particle image velocimetry Harrison, G. M.;N. J. Lawson;D. V. Boger https://doi.org/10.1080/00986440108912902
  40. J. Non-Newtonian Fluid Mech. v.65 Turbulent velocity field in heterogeneously drag reduced pipe flow Hoyer, K.;A. Gyr https://doi.org/10.1016/0377-0257(96)01460-7
  41. J. Fluid Mech. v.262 Observations Of Purely Elastic Instabilities In The Taylor-Dean Flow of A Boger Fluid Joo, J.L.;E.S.G. Shaqfeh https://doi.org/10.1017/S002211209400042X
  42. J. Fluid Mech. v.266 An Experimental Investigation Of Concentrated Suspension Flows In A Rectangular Channell Koh, C. J.;P. Hookham;L. G. Leal https://doi.org/10.1017/S0022112094000911
  43. Developments In Laser Techniques and Fluid Mechanics: Selected papers from the 8th International Symposium, Lisbon, Portugal, 8-11 July, 1996 Molecular Tagging Diagnostics for the Study of Kinematics and Mixing in Liquid Phase Flows Koochesfahani, M. M.;R. K. Cohn;C. P. Gendrich;D. G. Nocera;R. J. Adrian(ed.);D.F.G. Durao(ed.);F. Durst(ed.);M. V. Heitor(ed.);M. Maieda(ed.);J. H. Whitelaw(ed.)
  44. Rheol. Acta v.38 Elongational effects in the flow of viscoelastic fluid through a wavy channel Koshiba, T.;N. Mori;S. Sugiyama;K. Nakamura https://doi.org/10.1007/s003970050188
  45. Rheology, Vol 3: Applications Applications of the Laser Doppler Velocimetry to Polymer Melt Flow Studies Kramer, H.;J. Meissner
  46. J. Non-Newtonian Fluid Mech. v.20 Laser Doppler Velocimetry Measurements Of Velocity-Fields And Transitions In Viscoelastic Fluids Lawler, J. V.;S. J. Muller;R. A. Brown;R. C. Armstrong https://doi.org/10.1016/0377-0257(86)80015-5
  47. Opt Laser Eng. v.32 Three-dimensional particle image velocimetry: a low-cost 35mm angular stereoscopic system for liquid flows Lawson, N. J.;J. Wu https://doi.org/10.1016/S0143-8166(99)00053-6
  48. Macromolecules v.32 Flow light scattering studies of polymer coil conformation in solutions in extensional flow Lee, E. C.;S. J. Muller https://doi.org/10.1021/ma981277a
  49. J. Korean Phys. Soc. v.35 Application of photon correlation spectroscopy to the study of uniform shear-flow Lee, S. J.;H. K. Pak
  50. Meas. Sci. Technol. v.11 Flow tagging velocimetry using caged dye photoactivated fluorophores Lempert, W. R.;S. R. Harris https://doi.org/10.1088/0957-0233/11/9/302
  51. Chinese J. Polym. Sci. v.19 Transient effect of a Boger fluid flowing around a confined cylinder Li, X. F.;H. T. Bu;D. L. Zhao
  52. J. Fluid Mech. v.363 An experimental study of the motion of concentrated suspensions in two-dimensional channel flow Part 1: Monodisperse systems Lyon, M. K.;L. G. Leal https://doi.org/10.1017/S0022112098008817
  53. Philos. Trans. Roy. Soc. A v.344 The Wake Instability In Viscoelastic Flow Past Confined Circular-Cylinders McKinley, G. H.;R. C. Armstrong;R. A. Brown https://doi.org/10.1098/rsta.1993.0091
  54. J. Fluid Mech. v.223 Nonlinear Dynamics Of Viscoelastic Flow In Axisymmetrical Abrupt Contractions McKinley, G. H.;W. P. Raiford;R. A. Brown;R. C. Armstrong https://doi.org/10.1017/S0022112091001489
  55. Annu. Rev. Fluid Mech. v.29 Quantitative Flow Visualization in Unseeded Flows Miles, R. B.;W. R. Lempert https://doi.org/10.1146/annurev.fluid.29.1.285
  56. Chem. Eng. J. v.71 Flow generated by a disc turbine in aqueous solutions of polyacrylamide Mishra, V. P.;P. Kumar;J. B. Joshi https://doi.org/10.1016/S1385-8947(98)00112-0
  57. J. Non-Newtonian Fluid Mech. v.46 Experimental studies of the onset of oscillatory instability in viscoelastic Taylor-Couette flow Muller, S. J.;E.S.G. Shaqfeh;R. G. Larson https://doi.org/10.1016/0377-0257(93)85053-D
  58. Rheol. Acta v.40 Influence of molecular structure on secondary flow of polyolefin melts as investigated by laser-Doppler velocimetry Munstedt, H.;M. Schwetz;M. Heindl;M. Schmidt https://doi.org/10.1007/s003970000160
  59. Nihon Reoroji Gakkaishi v.27 Entry flow of polymer solutions through multihole abrupt contractions Naka, Y.;K. Chiba;K. Nakamura https://doi.org/10.1678/rheology.27.15
  60. J. Rheol. v.37 Concentration Effects On Birefringence And Flow Modification Of Semidilute Polymer-Solutions In Extensional Flows Ng, C. Y.;L. G. Leal https://doi.org/10.1122/1.550453
  61. Phys. Fluids v.10 Cavity flows of elastic liquids: Purely elastic instabilities Pakdel, P.;G. H. McKinley https://doi.org/10.1063/1.869631
  62. Phys. Fluids v.9 Cavity flows of elastic liquids: Twodimensional flows Pakdel, P.;S. H. Spiegelberg;G. H. McKinley https://doi.org/10.1063/1.869430
  63. AIChE. J. v.43 Digital particle imaging velocimetry of viscoelastic fluids Pakdel, P.;G. H. McKinley https://doi.org/10.1002/aic.690430202
  64. Science v.276 Single polymer dynamics in an elongational flow Perkins, T. T.;D. E. Smith;S. Chu https://doi.org/10.1126/science.276.5321.2016
  65. J. Non-Newtonian Fluid Mech. v.59 Slip-Flow Of Polybutadiene Through Fluorinated Dies Piau, J. M.;N. Kissi;A. Mezghani https://doi.org/10.1016/0377-0257(95)01349-Z
  66. Flow Turbulence And Combustion v.66 Experiments in turbulent pipe flow with polymer additives at maximum drag reduction Ptasinski, P. K.;F.T.M. Nieuwstadt;B.H.A.A. van den Brule;M. A. Hulsen https://doi.org/10.1023/A:1017985826227
  67. J. Rheol. v.39 Use Of Coupled Birefringence And LDV Studies Of Flow-Through A Planar Contraction To Test Constitutive-Equations For Concentrated Polymer-Solutions Quinzani, L. M.;R. C. Armstrong;R. A. Brown RA https://doi.org/10.1122/1.550725
  68. J. Non-Newtonian Fluid Mech. v.52 Birefringence And Laser-Doppler Velocimetry (LDV) Studies Of Viscoelastic Flow-Through A Planar Contraction Quinzani, L. M.;R. C. Armstrong;R. A. Brown https://doi.org/10.1016/0377-0257(94)85056-9
  69. J. Non-Newtonian Fluid Mech. v.32 LDV Measurements Of Viscoelastic Flow Transitions In Abrupt Axisymmetric Contractions-Interaction Of Inertia And Elasticity Raiford, W. P.;L. M. Quinzani;P. J. Coates;R. C. Armstrong;R. A. Brown https://doi.org/10.1016/0377-0257(89)85040-2
  70. J. Non-Newtonian Fluid Mech. v.98 The axisymmetric contraction-expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop Rothstein, J. P.;G. H. McKinley https://doi.org/10.1016/S0377-0257(01)00094-5
  71. J. Non-Newton Fluid Mech. v.86 Extensional flow of a polystyrene Boger fluid through a 4 : 1 : 4 axisymmetric contraction/expansion Rothstein, J. P.;G. H. McKinley https://doi.org/10.1016/S0377-0257(98)00202-X
  72. Exp. Fluids v.22 A combined PIV/LIF-system for the measurement of heterogeneous drag reduction effects in a pipe-flow Saadeh, M.;K. Strauss;T. Schneider https://doi.org/10.1007/s003480050051
  73. Exp.Fluids v.25 A particle image velocimetry system for microfluidics Santiago, J. G.;S. T. Wereley;C. D. Meinhart;D. J. Beebe;R. J. Adrian https://doi.org/10.1007/s003480050235
  74. Appl. Math. Model v.18 On The Flow Of Non-Newtonian Polymer-Solutions Savvas, T. A.;N. C. Markatos;C. D. Papaspyrides https://doi.org/10.1016/0307-904X(94)90178-3
  75. Meas. Sci. Technol. v.5 A 2-Component He-Ne Laser-Doppler Anemometer For Detection Of Turbulent Reynolds Stresses And Its Application To Water And Drag-Reducing Polymer-Solutions Scharf, R. https://doi.org/10.1088/0957-0233/5/12/017
  76. J. Non-Newtonian Fluid Mech. v.79 3D numerical/experimental study on a stagnation flow of a polyisobutylene solution Schoonen, J.F.M.;F.H.M. Swartjes;G.W.M. Peters;F.P.T. Baaijens;H.E.H. Meijer https://doi.org/10.1016/S0377-0257(98)00118-9
  77. Exp. Fluids v.28 Hydroelastic instabilities in viscoelastic flow past a cylinder confined in a channel Shiang, A. H.;A. Oztekin;J. C. Lin;D. Rockwell https://doi.org/10.1007/s003480050017
  78. J. Non-Newtonian Fluid Mech. v.73 Viscoelastic flow around a confined circular cylinder: measurements using high-image-density particle image velocimetry Shiang, A. H.;J. C. Lin;A. Oztekin;D. Rockwell https://doi.org/10.1016/S0377-0257(97)00053-0
  79. J. Non-Newtonian Fluid Mech. v.74 LVD measurement of the flow field in a constantextensional-rate channel Shirakashi, M.;H. Ito;D. F. James https://doi.org/10.1016/S0377-0257(97)00080-3
  80. Biomedical Microdevices v.3 Effect of Flow on Complex Biological Macromolecules in Microfluidic Devices Shrewsbury, P. J.;S. J. Muller;D. Liepmann https://doi.org/10.1023/A:1011415414667
  81. J. Fluid Mech. v.429 Swirling flow of viscoelastic fluids: Part 1. Interaction between inertia and elasticity Stokes, J. R.;L.J.W. Graham;N. J. Lawson;D. V. Boger https://doi.org/10.1017/S0022112000002883
  82. J. Fluid Mech. v.429 Swirling flow of viscoelastic fluids:Part 2. Elastic effects Stokes, J. R.;L.J.W. Graham;N. J. Lawson;D .V. Boger https://doi.org/10.1017/S0022112000002901
  83. J. Non-Newtonian Fluid Mech. v.53 A Rheooptical Study Of Polydimethylsiloxane Melt Subramanian, R.;J.J.C. Picot https://doi.org/10.1016/0377-0257(94)85044-5
  84. Exp. Fluids v.29 Experimental investigation on the interaction between polymer solution jet and free surface Tanaka, G.;K. Okamoto;H. Madarame https://doi.org/10.1007/s003489900076
  85. J. Chem. Phys. v.102 Polymer-Chain Dynamics In Dilute-Solutions Under Couette-Flow-Dynamic Light-Scattering From Polystyrenes In A Good Solvent Tsunashima, Y. https://doi.org/10.1063/1.469515
  86. Phys. Fluids v.11 The decay of grid turbulence in polymer and surfactant solutions Van Doorn, E.;C. M. White;K. R. Sreenivasan https://doi.org/10.1063/1.870100
  87. J. Non-Newtonian Fluid Mech. v.49 Characterization Of The Non-Newtonian Flow Behavior Of Drag-Reducing Fluids Vlassopoulos, D.;W. R. Schowalter https://doi.org/10.1016/0377-0257(93)85003-S
  88. Phys. Fluids v.6 Time-Resolved Velocity-Gradient And Optical Anisotropy In Linear Flow By Photon-Correlation Spectroscopy Wang, J. J.;D. Yavich;L. G. Leal https://doi.org/10.1063/1.868411
  89. Meas. Sci. Technol. v.8 Fundamentals of digital particle image velocimetry Westerweel, J. https://doi.org/10.1088/0957-0233/8/12/002
  90. Digital Particle Image Velocimetry й Theory and Application Westerweel, J.
  91. Exp. Fluids v.10 Digigtal Particle Image Velocimetry Willert, C. E.;M. Gharib
  92. J. Non-Newtonian Fluid Mech. v.58 An Experimental Investigation Of The Flow Of Dilute Polymer-Solutions Through Corrugated Channels Yalamanchili, R. C.;A. Sirivat;K. R. Rajagopal https://doi.org/10.1016/0377-0257(95)01347-X
  93. Int. J. Nonlinear Mech. v.28 Flow Of Non-Newtonian Fluids In Corrugated Channels Yalamanchili, R. C. https://doi.org/10.1016/0020-7462(93)90046-N
  94. J. Rheol. v.42 Experimental studies of an entangled polystyrene solution in steady state mixed type flows Yavich, D.;D. W. Mead;J. P. Oberhauser;L. G. Leal https://doi.org/10.1122/1.550957