Modeling of Degenerate Quantum Well Devices Including Pauli Exclusion Principle

  • 이은주 (한림대학교 정보통신공학부)
  • Lee, Eun-Ju (Dept. of Information Communication Engineering, Hallym University)
  • 발행 : 2002.02.01

초록

Pauli 배타 원리를 적용한 축퇴 상태의 양자 우물 소자 모델링을 제안하였다. 양자 우물에서의 다중 에너지 부준위 각각에 대한 Boltzmann 방정식의 collision 항들을 Pauli 배타 원리를 적용하여 전개하고 이들을 Schrodinger 방정식과 Poisson 방정식과 결합하여 비선형적인 시스템의 모델을 설정하였다. 시스템의 해를 직접적으로 구하기 위하여 유한 차분법과 Newton-Raphson method를 적용하여 양자 우물의 다중 에너지 부준위 각각에 대한 캐리어 분포 함수를 구하였다. Si MOSFET의 inversion 영역에 본 모델을 적용하여 전자 밀도의 증가에 따라 양자 우물의 에너지 분포 함수가 Boltzmann 분포 함수의 형태로부터 Fermi-Dirac 분포 함수의 형태로 변화함을 제시하고, 소자 크기가 감소할수록 소자 모델링에 있어서의 Pauli 배타 원리의 중요성과 함께 본 모델의 정당함과 그 해석 방법의 효율성을 보여주었다.

A new model for degenerate semiconductor quantum well devices was developed. In this model, the multi-subband Boltzmann transport equation was formulated by applying the Pauli exclusion principle and coupled to the Schrodinger and Poisson equations. For the solution of the resulted nonlinear system, the finite difference method and the Newton-Raphson method was used and carrier energy distribution function was obtained for each subband. The model was applied to a Si MOSFET inversion layer. The results of the simulation showed the changes of the distribution function from Boltzmann like to Fermi-Dirac like depending on the electron density in the quantum well, which presents the appropriateness of this modeling, the effectiveness of the solution method, and the importance of the Pauli -exclusion principle according to the reduced size of semiconductor devices.

키워드

참고문헌

  1. Thomas G. Pedersen, Kjeld Pedersen and Thomas B. Kristensen, 'Optical second-harmonic generation as a probe of quantum well states in ultrathin Au and Ag films deposited on Si(111)', Thin Solid Films, vol. 364, 1-2 pp. 86-90, 2000 https://doi.org/10.1016/S0040-6090(99)00913-X
  2. YC Yeo, TC Chong, MF Li, WJ Fan, 'Electronic band structures and optical gain spectra of strained wurtzite GaN-AlxGal-xN quantum-well lasers', IEEE Journal of Quantum Electronics vol. 34 no. 3, pp.526-534, 1998 https://doi.org/10.1109/3.661462
  3. L. R. Friedman, R. A. Soref, and J. B. Khurgin, 'Linear and quadratic electrooptic effects in symmetric and asymmetric quantum well structures,' IEEE, J. Quantum Electronics, Vol. 31, No. 2, pp 219-227, February 1995 https://doi.org/10.1109/3.348048
  4. Hyuk J. Choi, E. Rotenberg, R. K. Kawakami, U. Bovensiepen, J. H. Wolfe, N. V. Smith, and Z. Q. Qiu, 'Effect of interfacial roughness on the phase of quantum well states in Cu/Co(001) and Cu/Ni(001) systems', Phys. Rev. B 62, 6561 2000 https://doi.org/10.1103/PhysRevB.62.6561
  5. R. Tsu, 'Silicon-based quantum wells', Nature, Vol. 364, 1 July 1993 https://doi.org/10.1038/364019a0
  6. J.B. Wang and S. Midgley, 'Quantum waveguide theory : a direct solution to the time-dependent Schrodinger equation', Phys. Rev. B 60, 13668, 1999 https://doi.org/10.1103/PhysRevB.60.13668
  7. I. Vurgaftman and J.R. Meyer, 'High-temperature HgTe/CdTe multiple-quantum-well lasers', Optics Express, vol.2 no. 4, pp. 137-142, 1998 https://doi.org/10.1364/OE.2.000137
  8. A. Balandin, K. L. Wang, N. Kouklin and S. Bandyopadhyay, 'Raman Spectroscopic Study of Inter-subband Transitions in Self Assembled CdS Quantum Dots', Appl. Phys. Lett., Vol. 76, p.137, 2000 https://doi.org/10.1063/1.125681
  9. Q. L., S.-L. Wang, N. Goldsman and J. Frey, 'RELY : A physics-Based CAD Tool for Predicting Time-Dependent Hot Electron Induced Degradation in MOSFETs', Solid-State Electronics, vol. 36, pp. 833-841, 1993 https://doi.org/10.1016/0038-1101(93)90005-B
  10. R. L. Liboff, Introduction to the Theory of Kinetic Equations. New York : John Wiley & Sons, 1969
  11. C. E. Korman and I. D. Mayergoyz, 'A Glovally Convergent Algorithm for the Solution of the Steady-State Semiconductor Device', Journal of Applied Physics, vol. 68, no. 3, pp. 1324, 1990 https://doi.org/10.1063/1.346702
  12. W. Quade, M. Rudan, and E. Scholl, 'Hydrodynamic Simulation of Impact-Ionization Effects in P-N Junctions', IEEE Trans. Computer-Aided Design, vol. 10, no. 10, pp. 1287-1294, 1991 https://doi.org/10.1109/43.88924
  13. S. E. Laux and M. V. Fischetti, 'Monte Carlo Study of Velocity Overshoot in a 0.1-Micron CMOS Inverter', Proceedings, 1995 IEDM, pp. 877-880, December 1997 https://doi.org/10.1109/IEDM.1997.650521
  14. M.S. Boris Gelmont and C. Moglestue, 'Theory of Junction Between Two-Dimensional Electron Gas and p-Type Semiconductor', IEEE Trans. on ED. vol. 39, no. 5, pp. 1216-1223, 1992 https://doi.org/10.1109/16.129106
  15. Blachman, N., 'Mathematica : a Practical Approach', 2nd ed., Prentice Hall(Upper Saddle River, N.J), 1999
  16. E. M. Conwell, 'High Field Transport in Semiconductors', Solid State Physics, Suppl. 9, Academic Press, New York, 1967
  17. B. N. Parlett, 'The Symmetrical Eigenvalue Problem', Prentice Hall, 1980
  18. Frank Stern and W.E. Howard, 'Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit', Physical Review, Vol. 163, p.816, 1967 https://doi.org/10.1103/PhysRev.163.816