초록
Discharge pattern and water quality were investigated in the drainage water from about 10 ha of groundwater-irrigated paddy field in the growing season of 2001. Total discharge quantity was about 1,117.2 mm in which about 75% was caused by management drainage due to cultural practice of paddy rice farming and the rest by rainfall runoff where total rainfall was about 515 mm. Dry-day sampling data showed wide variations in constituent concentrations with average of 26.14 mg/L, 0.37 mg/L, 3.54 mg/L at the inlet, and 43.60 mg/L, 0.34 mg/L, 3.58 mg/L at the outlet for CO $D_{cr}$ , T-P, and T-N, respectively. Wet-day sampling data demonstrated that generally CO $D_{cr}$ followed the discharge pattern and T-P was in opposite to the discharge pattern, but T-N did not show apparent pattern to the discharge. Discharge and load are in strong relationship. And based on regression equation, pollutant loads from groundwater irrigation area are estimated to be 288.34, 1.17, and 5.45 kg/ha for CO $D_{cr}$ , T-P, and T-N, respectively, which was relatively lower than the literature value from surface water irrigation area which implies that groundwater irrigation area might use less irrigation water and result in less drainage water, Therefore, total pollutant load from paddies irrigation with groundwater could be significantly lower than that with surface water. This study shows that agricultural drainage water management needs a good care of drainage outlet as well as rainfall runoff. This study was based on limited monitoring data of one year, and further monitoring and successive analysis are recommended for more generalized conclusion.