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Note on Robust Stabilization of Uncertain Input-delay Systems by
Sliding Mode Control With Delay Compensation

Dong Yue, Sangchul Won and Ohmin Kwon

Abstract: In this note, we suggest a new matching condition and extend the stability analysis to the ultimate boundness of state
x(¢) for uncertain input-delay systems, using a sliding control with delay compensation.
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L Introduction

In real physical systems, input delays are frequently
encountered because both measurement delays and computa-
tional delays are represented by input delay and many re-
searchers have studied the problem of designing a controller
for systems with input delay [1]{2][{5][6].

In {6], a new sliding mode control was proposed for uncer-
tain input-delay systems with nonlinear parameter perturba-
tions. The sliding surface was designed to compensate for the
input-delay. Also, system behavior was examined in the slid-
ing mode by focusing on the reduced order dynamics of the
transformed delay-free system under the proposed control.
However, the assumed matching conditions cannot be used for
the delay-free system (20) in [6] and analyzed the stability of
the predictive state x(f) , not the state x(¢) .

In this note, we suggest a new matching condition for the
delay-free system (20) in [6] and extend a sliding mode con-
troller in [6] which can stabilize the state x{(¢t). In order to
analyze the stability of the state x(¢), we derive a new rela-
tionship between state x(t) and predictive state x(7) on the
sliding surface in [6]. Next, we develop a new sufficient con-
dition for the ultimate boundedness [3] of state x(r) under
the control. Finally, we show the ultimate bound of state x(¢)
and maximum allowable value of the input delay.

11. Problem statements and controller design
Consider an uncertain system with time delay [6]

x(t) = Ax(t)+ Bu(t —1) + fo (2, x()) + fi(t, x(t - 1))

o))
x(s) = ¢(s), u(s) = v(s), se [-21,0],

where x(f)e R", u(t)e R™ and >0 are the state vec-
tor, the input vector, and the known time delay, respectively.
A and B are constant matrices of appropriate dimensions.
The nonlinear uncertainty, fy(r,x(r)) and f(t,x(t—1)) are
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continuous in f,x(¢t) and x(t—t). ¢(s) and v(s) denote
the initial condition functions.

In this note, we assume that the pair (A, B) is controllable
and that B is of full rank and the uncertainty,
folt,x() + fit,x(t - 7)) , satisfies the following matching
condition

folt.x(©)+ fit,x(t-T) =& " Bleg (t, x(t)) + € (1, x(t = 7))},
@
where  [leg(t, x)+ € (8, x(t ~ )| < pox||+ prfr - D)+ & .
PopP1 and k are some known constants.
Remark 1 : In [6], the uncertainties, fy(z,x(s)) and
filt,x(t~1)) , are assumed to be satisfied in the following
relations

Solt,x(£)) = Bey(t,x(t)),  fi(t,x(t —T))= Be(t,x(t ~T)).

However, these relations cannot be the matching conditions
for the delay-free system (20) in {6]. Therefore, the stability
analysis technique for the state x(z) proposed in Section 4 of
[6] cannot be used.

Under the new matching condition (2), with the same pre-
dictive state as in [6],

0
X(t) = e x() + Je‘f“’ Bu(r+6)do , 3)

we have the delay-free system
X(t) = A%(t) + Bu(t) + Bleg(t, x(t)) + ¢ (t,x(t —T))}) (4

Consider a switching surface for system (4)
o (1) =Sx(1) . (5
where Se R™" is chosen, such that SB is nonsingular. With-
out loss of generality we assume SB = I (identity matrix) [4].

Under the new matching condition (2), we propose a modi-
fied variable structure control

u(t)=—~SAx(t) =8 (1, x(t), x(t — 7)) sgn(0} , (6)
where
8(t, x(1),x(t =) = o[+ py|xt - )|+ gk,
sgn(@) =[sgn(0)),....sgn(@ ,)]" and ¢>1.

Theorem 1 : Under the control (6), the sliding mode,
o (t)=0, is reachable in a finite time.
Proof : Define a Lyapunov function as
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l 7
Vity=—0" 0.
® 2

Then, the time derivative of V(¢) yields
Viy=cTo
= O'TS[A)?(t) + Bu(t) + Bleg(t,x(¢)) + e (¢, x(t — 7))} ]
=—oT8(t,x)sgn(o) + o {eq(t,x()) + € (t, x(t — 1))}
<=-6(t,x(),x(t — r))[lo“ + (po "x” + 01 "x(t - r)” + k)“cr"
=—~(q-Dk|o]-

Therefore, o(t)=0 is reachable in a finite time.
|
Using Theorem 1, we know that o(f)=0 can be realized
after a finite time. Combining (4), (5) and using the similar
analysis of [4], it can be shown that appropriately chosen the
matrix S can guarantee the sliding mode

X(t) = Ax(t) + Bu(t) + Bleg(6,x(O)) + e (t, x(t - )},
o()=0,

is asymptotically stable.

II1L. Stability analysis of x(t)

In [6], the stability analysis is limited on X(¢) , therefore, in
this section, we extend the analysis to the ultimate bounded-
ness of x(¢). To accomplish this, we begin the analysis by
finding the relationship between x(r) and x(¢f) on the slid-
ing surface.

We infer from the section above that control (6) can force
the state ¥(f) to reach the sliding surface o=0. In the
sliding mode, the real control can also be expressed as the
following equivalent form, by setting 6 =0,

u(t) = ~SAX(t) ~ e (1, %) — e, (t, X(t = 7)). G

Substituting (7) into (3) and arranging the terms, we have

—Ar

x(t)=e X[+
’ ®)
A0 Ie‘ASB{SAE(s)+e0(s,x)+e,(s,x(s-r))}ds,
-1
then
@< o] sup_|xs)]+ AlBSA| sup |55
t-27r<s<t t—r<sst
+||e'ATE(t)|l+k,B“Bu, ©
where ,B—H ”A"T -1, p=po+p-
Theorem 2 : Consider the system (1). If there exists 7
which satisfies <7y = ( ” ” ] , then the state
II RECN
x(#) of the system (1) is ultimately bounded [3] and the ulti-
mate bound is Lﬂ‘ﬂ— under the control (6).
1-pp)B]

Proof: The proof consists of two parts. In the first part, we

show the boundedness of x(¢), and, in the second part, we
show the ultimate boundedness of x(¢f) by using the results
of the first part.

Part 1; Since the delay free system (4) is asymptotically sta-
ble, there exists a constant M exists such that

sup [|[x(s)|< M, and (‘ —Afx(t)"<M1, £20.

t—T<s<t
Hence, from (9), we obtain

x| <a sup |x(s)|+8, 120 (10)
t—27<s5<t

where o = pﬁ’”B“ & =(1+ B|BSAM; + kp||B] .

Since 7<ry = "AH [/’Julﬂnﬂ] it is easy to see that

o= pB|B|<1.
Next, we show that, forany & >0,

"x(t)” < sup “¢(s)“e"g + o +&, 120 (11)
—27r<s<0 -«

where 0<g< ——l—lna .
2t

To prove (11), we use the way of contradiction.
Since, for any & >0, from (10), we know that

)
“x(O)n <a sup n¢(s)n +5< sup n¢(s)n + o +& (12)
—27<s<0 —-7<5<0 %

Therefore, if (11) does not hold, then 3¢ > 0, >0 such that

@)= sup ¢ +1—5—+ & (13)
—-7<s<0 -
and
_ s -
x@)< sup |os)e™ F e <t (14)
~2r<s<0 —-a

However, from (10), (13) and (14), we have

"x(f)"Sa_ 2sup _"x(s)”+§
f—2r<s<t

<ae®" sup [p(s)e q Ti +af+8
—27<5<0

< sup "¢(s)”e xd +———+c_’;’

—27<s<0

which contradicts (13). Hence, (11) is true. Since & is arbi-
trary, letting & — 0 in (11) we can further obtain

Jx@)f < Sup 0||¢(s)||e , 120. (15)

Defining M, = 2stp 0“¢(s)“ +% , we have
—27<s< -

x| <My, £20. 16)

Part 2: From the asymptotic stability of X(¢), we know that
forany £>0, #; >0 exists such that
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sup [F(s)< i’
—rss<t (1+ B|BS4|) 2
and
—Ar = i 7
” ()” 1+ ﬂ”BSA") y fEh
Next, from (9) we obtain
o< s ||x(s)|1+f“ 2 s kplB|, 127,

By the similar analysis method of Part 1 we show that

T
@< sup [x(ses¢" )y g+——kﬂ/1ma"(3 B i,

f~2r<s<h, 1-a
amn

Since x(#) is bounded by M, , therefore, there exists
f >, such that

Mype S0 <§, >4 (18)

Combining (17) and (18), we have

ﬂ

, t>h.

Since &>0 is arbitrarily chosen, we can complete our proof
by lettinge — 0. [ |

Remark 2 : If k=0 in Assumption 1, then system (1)
under control (6) is asymptotically stable.

Remark 3 : 7y, = ||A” ( “ “ ] in Theorem 1 is the

Pl8]

maximum allowable value of 7 that guarantees the system
(1) is ultimately bounded under control (6).

IV. Example
Consider the following system

-1 0 0
x(,):[l l}x(z){l]u(po.z) { 8187}”)‘(0" 19

Obviously, the uncertainty satisfies the assumption (2). Define
a new state as

0
()=l x(r)+ je_AgBu(t +0)d8, (20)

-7

Then, we get the delay-free system

. - _ 0
x(z)z[ll ?:lx(t)+[1:|u(t)+[ﬂ"x(t)". 2D

Consider a switching surface for system (21)

a(ny=lo 1@ . (22)
Using (22), we design a variable structure controller of form
u(ty=-2 25 - |x(t)|sgn(o). 23)

Fig.1 are the simulation results of system (19) under control
(23).

0.5
0.4,
0.3]

o) i

0

-0.1

-0.2 7
[

Fig.1 Dynamical performance of state x, and x,.

V. Conclusions

In this note, it was pointed out that, under the assumption on
the uncertainty in [6], the matching conditions for the delay-
free system (20) in [6] cannot be guaranteed and therefore the
stability analysis techniques for the state X(¢f) cannot be used.
Then, a new matching condition on the uncertainty was given
in this note. Under the given assumption, we proposed a vari-
able structure control, which can force the state x(f) onto the
sliding mode and then go to zero along the sliding mode.
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