References
-
J. Math. Anal. Appl.
v.164
On the
$φ_o$ -stability of comparison differential system E.P. Akpan;O.Akingele -
I international center for theoretical Physics
v.180
On the
$φ_o$ -stability of functional differential equations E.P. Akpan - J. Math. Anal. Appl. v.113 Lipschitz stability of nonlinear systems of differential equations F. Dannan;Elaydi
- J. Differential Equations and Dynamical Systems v.3 no.3 On Lipschitz stability for nonlinear systems of ordinary differential equations M.M.A. El-Sheikh;A.A. Soliman
-
J. Pan Amer. Math. reprint
$φ_o$ -stability criteria of nonlinear systems of differential equations M.M.A. El-Sheikh;A.A. Soliman - Math. Biosci. v.12 A perturbed Kolmogrov-type model for the growth problem H.I. Freedman
- J.Canadian Applied Math. Quart v.3 no.2 Boundedness criteria for solutions of perturbed Kolmogrov population models H.I. Freedman;A.A. Martynyuk
- Differential and integral inequalities v.Ⅱ V. Lakshmikantham;S. Leela
- J. Nonlinear Anal. Theory, Methods, Appl. v.13 no.10 On asymptotic stability for nonautonomous differential systems V. Lakshmikantham;Xinzhi Liu
- Math. Biosci v.78 Perturbation in the three dimensional Kolmogorov model M.A. Sattar;G.Bojadziev
- Math. Biosci v.86 Bifurcations in the three dimensional Kolmogorov model M.A. Sttar;G.Bojadziev
- Pacific Journal of Mathematics v.151 no.2 On Lipschitz Stability for F.D.E Yu-Li Fu