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1. Introduction Easa (1988), it was l.assumed that the rectangles formed by

the grid were of equal size-that is, the grid was formed by

Surveyors are often called upon to measure volumes of taking equal size intervals along each of the axes. Chambers
earthwork needed to be moved for construction of seashore  (1989) generalized Easa’s result by allowing grids in which
reclamation, highways, railroads, canals, earth dams, the rectangles were of unequal sizes-that is, the grid were
pipelines, and similar projects. Earthwork quantities in the  formed by partitioning the axes into intervals of unequal
types of construction projects described herein are frequently  gjzes. But both methods have a common drawback: the
of such magnitude as to make up appreciable percentages of  interfaces of the approximating surfaces are sharp. To
the total project cost. Several methods have been developed  eliminate this drawback, Chen and Lin (1991) proposed the
for estimating the pit excavation volume ranging from a  ypic spline method, which provides smooth connections
simple formula to more complicated formulas and numerical between the approximating cubic spline polynomials with
the natural boundary conditions. Also, Fasa(1998) developed
the cubic Hermite polynomial method, which guarantees

methods. The standard methods can be characterized with
three basic ideas such as trapezoidal rule, Simpson rule and
cubic spline function. The trapezoidal method, which is the

] smooth connections between the approximating cubic
most simple method, approximates the ground profile of

Hermite polynomials. In this paper, we propose a method
each grid cell by a plane and estimates the pit excavation POy bape prop

. of finding a cubic spline surface, which interpolates the
volume as the product of the area of the grid cell and the

iven three di ional data, by usi bic B-splines. Not
average excavation heights of the grid cell corners SIven thiee dimensio 212, Dy 1sig cuble brepines. Note

(Anderson et al, 1985; Schmidt and Wong, 1985, Wolf and

Brinker, 1989; Moffit and Bossler, 1998). This method is the
the With the cubic spline along one direction and with the

that our developed method is different from Chen and Lin's
result. Chen and Lin (1991) approximate the ground surface
most in common, but the interfaces between . ) S
approximating planes are sharp and it may not properly linear function along the other direction. But our proposed

describe the ground surface. The Simpson based methods Method approximates the ground surface with the cubic

improve the accuracy of the volume estimation for the Spline polynomial along both x and y directions. The
approximation of the ground surface by considering a  Method is based on the cubic B-spline, and the interpolating
second-degree polynomial or a third-degree polyno-mial in  cubic spline surface can be obtained by those B-splines.
each direction of the grid (Easa, 1988; Chambers, 1989). In ~ Computational results of the proposed method and some

comments are presented in section 4. And I have compared

the proposed method with the spot height method, line of
ARF A BT ThokE A124MA best fit method, the Chen and Lin method to earthwork
51-890-1635 dymun@dongeui.ac.kr volume.
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2. Methods of Pit Excavation Volume

2.1 Spot height method

Consider the rectangular grid of whose sides into m and
n intervals. The excavation depths f(xi
=01,
the composite formular for calculating the

,vi) at the intersection
points f(xi ,yi), with i
known. Then,
volume of total grid, V, is given by

V*— zﬁ)i‘ba i ]

in which aijj

-, mandj=201 -, nare

= the corresponding elements of the following

matrix
12 2 1
2 1 - 4 2

g 4 e 42 @
12 21

2.2 Line of best fit method

In this method, a simplified cross secton is formed by
fitting a straight line to predetemined cross section points
using the theory of least squares(see equa. 3).

LIPS
a= ©

ﬁ— (B0
_2/‘652 x; ¥+ ix?ﬁyl‘

b: 1=1 =1 =1 21=] (4)

nglx?— (ﬁlx)

Value of parameters a and b in Egs.(3), (4) and vary from
one cross section to another due to the wvariation in
elevations.

2.3 Chen and Lin method

Considering the area between the x-axis and curve ab, the
cubic spline polynomial Sj(x) in the interval(xj, xj+1) may be
written in the form

— x/)2+ dj (x‘ xj)3
©)

S,(x)= d,‘+ b,(x— x,-)* C; (x

and the area Aj can be computed with the integral

A=Ca;— b;c;+ c;xi—djx Dxj— x)+

3d; x,)(x

b; .
+(—t—c; x;— +1T f)

2
Cj
(3

Using Eq. 6, we can compute the area between the curve ab

d;
Nt it -xh @

and the x-axis in the interval (xj, xj+1), i.e., the area Aj. In

similar manner we can compute the area between the curve
ab and the x-axis in the interval (xo, xn) using the

following equation:

A=f:5(x)azx= gA,- )

Eq. 7 is defined as the cubic spline area frmular. we can
derive n cubic spline polynomias, Si,0, Sil1,..., Sin-1 in the

x =xi direction.
( Si,j)/tolz a;i;+ bi;(y— y)+ci; (v— yj)z
tdi; (v y)° ®)
Using Eq. 6, the formular for calculating the area between
the curve that passes through the points {0k, fLk,..., fmk
and the baseline y = yk(z=0) in the interval [(x0, yk), (xm,
yk)], denoted as Ayk, is given by

Ay}?: f R
+[
the points fOk, flLk.., fmk+l and the baseline y =

yk+1(z=0) in the interval [(x0, yk+1), (xm, yk+1)], denoted
as Ayk, is given by

Ay = fx

+fx ) Sm—l,kﬂ(x)dx (10)

S, {x)dx+ fx 2 S a()dt o

Sm—l,k(x)dx (9)

SOk+1(x)dX+f S (X)dx+ -

It is reasonable to use the "end area" method to calculate
the excavation volume between Ayk and Ayk+1 as follows:

( Ayk+ Ay/e+l)Ay
2

V= (11)

2.4 Proposed method(spline surface interpolation
and its induced linear systems)
Let two points co=(xy,yy) be

given. Then the line segment joining above two points can

cl=(x1 , yl) and

be expressed as

l‘_t l‘_tz
ptley, ¢y by, b)) = ls— 1 c+ ts— 1

Co, te [ fz R t3] (12)

The two parameters #y and {3 are arbitrary real numbers

with t2< t3~
If we introduce the piecewise constant functions
1, t:=<&tivq,

By(H= (13)
0, otherwise

and set p, (H=p(tlc,_1, ¢c;; ty, ti41), We can write
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D=3 2:1(0 Bio(8)

For the quadratic spline curve, let three control points

€1, € €3 be given and set the knots with £, <3< #;<1;.

(19)

Then we can obtain the quadratic spline curve by using two
straight lines passing through ¢; and ¢y, ¢y and ¢3 in

the following way.

—t
ptley, ca, ¢35 ty, ts, £y, t5) = t4— i p(tler, ety ty)

t—ty
b— t

+ p(tlcy, ¢35 ts, 15). (15)

Here ¢ is the parameter which is in [t3 R t4]. For any #

control points (c¢;);=1, we can define the piecewise

quadratic spline curve by using the formula (15) and the
125 with B < £3<+ Kt 1ty

Set po(D=p(tci—3,Cim1,Ciitict, bistir1, tivs). Then

we can write the formula more precisely as
A= 35 10D Bio(D
Similarly, we can define the piecewise cubic spline curve.

A= 3 pis(DB oD, (1)

The formulas (14), (16), and (17) can also be written in
the form of

knot vector ( £;

(16)

A= 3 e BifD (1
where B [#) is given by the recurrence relation
__ it _tivira—t

Bidt)= — Biaa(O+ Livi+a— tin (19)
XBit1.a-1(0, d=1,2,3.

Here the function B;; is called a B-spline of degree
d(d=1,2,3) with knots £; The B-spline B ; ; depends

only on the knots (#;) ii‘lﬁl To understand the nature of

B-splines, B; ()= B(lt;,***, ;1 441) is sometimes useful.
For  example,  if d=2 and if we  set
(Lyotjwa tivar)=C(a, b,-,c,d), then (19) can be
written  B(tla,b,, ¢, d)(§) =L - ()
+-4=L B(t1p, -, c.d(d). 20)

We consider an interpolation problem at a set of gridded
data (x,,y,,f,]), | ;= 1, where

a=x,{x3¢<x,,, =b and c=y{y <y, =d For

each 7,7, we can think of f; as the value of an unknown
function f= Alx,y) at the point (x,y). We think of S,
and S, as two univariate piecewise cubic spline spaces
¢ m} and

So= span{e, -,

S, = span {¢, -,
@)}, where the ¢'s and ¢'s are

bases of cubic B-splines for the two spaces. With g in the

form  g(x,y) = ﬁzl 421 CraPf V) dy(x), the above
interpolation conditions lead to a set of equations
Z:. 2 oo P3) $u(x) = f (1)

p=1g=1

for all 7=1,--, my. This double sum

can be split into two sets of simple sums

ml and j:]_’...,

2 d,x) = @)
Z Cp, q¢a(y1 dlh/’- (23)
We can interpret (22) and (23) as follows:
¢1(x1) ¢52(x1) ¢ml(xl) dl,j f(xbyj‘)
$1(x2)  dalxg) ¢ m,(xZ) dsy; K xa, y,~)
$1(x ) G2(xw) = G (X)) d i KX, ¥9)
After solving the linear systems (23) and (24), we

can determine the control points

c;; (i=1,2,+,m,j=1,2,+,my). Substituting the
control points into g(x, 5) = 25 25 € 5,,24(3) (),

we find a piecewise cubic spline surface g(x,y) such that

a(x;, v)=f for
o1(0)  eaw) ¢m2(yl) Cia d;)
o1(y2)  @a(3n) @ m(¥2) || Ciz dis
= 25)
gol(y mg) §02(y mz) @ mz(y mz) Ciom, di, my
i=1,2,,m and 7=1,2,-, my. With this
interpolating cubic spline surface g(x,y), we can
determine the approximate volume in the following way.
bopd my o
Volume = [ [ 33 3 ¢,, 0, #0) av ax (26)
a Jc  p=1 g=1

Note that there are many ways to determine an appropriate

knot vector satisfying the Shoenberg-Whitney nesting
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conditions for a piecewise cubic spline surface interpolating
the given data. In this paper, we only concentrate on the
piecewise cubic spline without boundary conditions and
suggest method for the choice of an appropriate knot vector
which makes cubic B-splines. We consider nonuniform knot
vector, and present some computational results of these two

cases in the following section.

3. Some Computational Results

We use Maple software to implement our proposed
algorithm. We test two examples with several cases given
by Chen and Lin (1991), spot height method, line of best fit
method(1987). The first example is f(x, y) = V400 + v/ y
for 1<x<12]1 and 1<y<9]. There are three cases for the

first example:

Height (m)

40

120 Y-Direction (m)
X-Direction (m)

Fig. 1 An example terrain of V 400+ y%/y

Table 1 The height data to casel of v 400+ yi/y

v X Im | 16m | 41m | 5Im | 91m | 121lm
1m 20.02 | 2002 | 20.02 | 20.02 | 2002 | 20.02
16m 160 | 160 | 1.60 | 160 | 1.60 | 1.60
31m 119 | 119 | 119 | 119 | 119 | 1.19
46m 109 | 1.09 | 1.09 | 1.09 | 1.09 | 1.09
61m 1.05 | 1.05 | 1.05 | 1.05 | 1.05 | 1.05
76m 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03
91m 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02

Case 1; a 5 X 6 grid, with unequal intervals [1 16 41 51 91
121] in the x- direction, but with equal intervals [1 16 31 46
61 76 91] in the y- direction, Case 2, a 5 X 6 grid, with
equal intervals [1 25 49 73 97 121] in the x-direction, but
with unequal intervals [1 11 31 41 71 81 91] in the
y-direction,

Case 3; a 5 X 6 grid, with both unequal intervals [1 16 41
51 91 121] in the x-direction and [1 11 31 41 71 81 91] in
the y-direction. The second example is f(x, y) = (20 +y)/ Vi
for 1<x<12]1 and 1<y<9]. There are three cases for the
first example:Case 1; a 6 X 5 grid, with equal intervals [1
21 41 61 81 101 121] in the x-direction, but with unequal
intervals [1 26 36 66 81 91] in the y-direction,

Table 2 The height data to case2 of Vv 400+ y?/y

v X4V im | 25m | 49m | 73m | 97m | 12lm
Im 2002 | 2002 | 20.02 | 20.02 | 20.02 | 20.02
11m 208 | 208 | 208 208 | 208| 208
31m 1.19 | LI19 119 | 119 ] 1.19] 119
41m 11| 111 ] L1l | L1 o}onar|o1a
71m 104 | 104 | 104 | 1.04 | 1.04 | 1.04
8lm 103 | 103 | 1.03 | 1.03 | 1.03 | 1.03
9lm 102 | 102 | 102 | 1.02 | 1.02 | 102

Table 3 The height data to case3 of V 400+ y?/y

y 1 1m | 16m | 41m | 51m | 91m | 121m
1m 20.02 | 2002 | 20.02 | 20.02 ' 20.02 | 20.02
11m 208| 208 | 208 | 208 . 208| 208
31m 119 1.19 119 | 119 119 1.19
41m 111 111 | 111 | 111 11| 111
71m 104 | 1.04 | 1.04 | 1.04 104 | 1.04
81m 1.03| 1.03 | 103 | 1.03 103 | 1.03
91m 1.02 | 1.02 | 1.02 | 1.02 102 | 1.02

20 a0

¥-Direction (m)
*Direction (m)

Fig. 2 An example terrain of (20 +y)/ Vx

Case 2, a 6 X 5 grid, with unequal intervals [1 16 46 56 91
101 121] in the x-direction, but with equal intervals [1 19 37
55 73 91] in the y-direction, Case 3; a 5 X 6 grid, with both
unequal intervals [1 16 46 56 91 101 121] in the x-direction
and [1 26 36 66 81 91] in the y-direction. For the choice of
a knot satisfying the Schoenberg-Whitney nest
conditions, the uniform knot vector is the simplest method.

vector

Table 4 The height data to casel of (20 +y)/ Vx

v X 1m | 21m | 4lm | 6Im | 81m | 101m |121m
1m 21.00 | 458 | 328 | 269 | 233 | 209 | 191
26m 46,00 | 2.08| 2.08| 2.08| 2.08| 208 | 208
36m 56.00 |12.22| 8.75| 7.17| 6.22| 557 | 5.09
66m 86.00 | 18.77 |13.43|11.01| 956| 856 | 7.82
81m 101.00 | 22.04 | 15.77 [12.93 | 11.22 | 10.05 | 9.18
91m 111.00 | 24.22 | 17.34 [ 14.21 | 12.33 | 11.05 | 10.09
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Table 5 The height data to case2 of (20 +y)/ Vx

Table 7 Application results example terrain of vV 400+ y*/y

Therefore, we test the case of uniform knot vector. We take
the uniform knot vector [0, 0, O, O, m, %, 122, 122, 122,
122,] in the x-direction and [0, 0, 0, 0, 23, 46, 69, 92, 92, 92,

9] in the y-direction for the first ex-ample. Also, for the
second example, we have the uniform knot vector [0, 0, 0,

0, 14@ 23—4 3%6 122, 122, 122, 122] in the x-direction and
[0 0,0 0 4,618 9 9 9 9] in they-direction. For
3773 y

the nonuniform knot vector, we test the first example with
[1, 1, 1, 1, 31, 61, 122, 122, 122, 122] in the x-direction and
[, 1,1, 1,7 46, 69, 92, 92, 92, 92] in the y-direction. Also,

we test the second example with [1, 1, 1, 1, 10, 1%1, %,
122, 122, 122, 122] in the x-direction and [1, 1, 1, 1, %

%, 92, 92, 92, 92] in the y-direction. Here we can

Surveying data input(coordinate and height)
f(xi,y7) for i=1,2---,my, j=1,2---,my

Formation the knot vector for x,y axis direction that
satisfies the schoenberg-Whitney nesting condition
An example of without boundary condition
case, (xq,%,.X1.X5, KoK, Km, o Xmp Xomy» Xmyo X, )

and (v,,v1v1vi, Ko K3 . Ko, 4o Vi Vings Vings Yimy)

|
’7 Formation of B-spline using the knot vector l
\
Calculation the
ci,j(xi,y]-)(i=1,2-~~,m1, j=1,2---,m2)
and solve the linear system

| Formation of cubic spline surface |

’ Calculate the Volume |

Fig. 3 Flow chart of a proposed method.

v X1 1m |16m| 46m | 56m | 91m |101m|121lm Casel Case2 Case3
Method [ yolume | Frror | Volume | Error | Volume | Error
1m 21.00 (525 310 | 2.81 | 2.20 | 2.09 | 191 e | | | | ()
19m 39.00 | 9.75| 575 | 5.21 409 | 3.88| 3.55 Ei(ad 17,109.13 ) 17,109.13 ) 17,109.13 )
37m 57.00 [14.25| 840 | 7.62| 598 | 567 518 voume
55m 75.00 118.75 11.05 | 10.02| 7.86 | 7.46| 6.82 Spot |29,664.00| 73.381 |24,906.00 | 45.571 24,018.00 |40.381
73m 93.00 |23.25| 13.71 |12.43| 975 | 925| 8.45 Line 29817.00 | 74.280 | 24519.00 | 43.310 | 24519.00 |43.310
91m 111.00 |27.75| 16.37 | 14.83 | 11.64 | 11.05 | 10.09 Chen |26,178.85|53.011 |18,076.02| 5.651 |18,076.02| 5.651
Table 6 The height data to case3 of (20 +y)/ V' x Proposed|16,945.15 | 0.960 |17,488.18 | 2.220 |17,488.18 | 2.220
X 1m | 16m | 46m | 56m | 91m | 101m [121m| Summarize some computational results. example with [1, 1,
v
1m 2100 | 525 | 310 | 281 | 220 | 200 | 191 | 1 1 10, 421, 3 122 129 122, 122] in the x-direction
26m 46.00 | 11.50| 6.78| 6.15 482+ 458 | 4.18 and [ 1, 1, 1, 91 &, 2, 92, 2, 9] in the y—direction.
36m 56.00 | 14.00 | 8.26| 7.48| 587 | 557 | 5.09 3 3
66m 86.00 | 21.50 |12.68 |11.49| 9.02 856 | 7.82 Here we can summarize some computaﬁonal results.
81m 101.00| 25.25 | 14.89 | 13.50 | 10.59| 10.05| 9.18
91m 111.00| 27.75 | 16.37114.83 | 11.64 | 11.05 | 10.09 Table 8 Appﬁcaﬁon results example terrain of (20 +y’)/ \/—x

Casel Case2 Case3

Method | violume | Error | Volume | Error | Volume | Frror

() (%) (m) (%) (m’) (%

Vgi(sge 118,800.00| - |[118,800.00f - (118,800.00| -
Spot |149,009.30|25.429|141,614.50|19.204141,613.80{19.204
Line |178,025.76]49.850|190,359.50|60.240|190,374.40|60.250
Chen !139,567.80117.481|122,008.90| 2.701 |121,859.90| 2.576
Proposed |117,657.45| 0.960|119,116.21| 0.260|119,116.21| 0.260

Since the ground surface is expressed mathematically, the
exact volume can be determined using intergration as
17,109.13m' and 118,800m’. From the results of cases 1, 2, 3
of example 1, as shown in Table 7, the error produced
using a spot heigt method, line best of fit, Chen and Lin
method is 2.5~77 times larger than that using a proposed
method. Similarly, the results of cases 1, 2, 3 of example 2,
as shown in Table 8, the error produced using a spot heigt
method, line best of fit, Chen and Lin method is 9.9~232

100 Ocasel
90 Ocase2
80 Bcased
E 70
r
r 60
o 5
'
(%)
30
20
10
0

Spot Line
Method

Fig. 4 An earthwork error of the terrain v 400+ vty
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100 Ocasel

90 Ocase2

80 Ocase3
g 70
T 60
o 5
r 40
(%) 4
20
10

0 i ¥ L2z

Spot Line Chen Proposed

Method

Fig. 5 An earthwork error of the terrain (20 +y)/ Vx

times larger than that using a proposed method. Also, from
the results of cases 1, 2, 3 of example 1 and 2 as shown in
Table 7, 8, the error produced using an improper grid is 2.3
~ 94 times larger than that using a proper grid.

4. Conclusions

In this paper a new formula has been developed for
estimating the volume of a borrow pit excavaion based on
an extension of the cubic spline polynomial without
boundary condition.: Because the grid of a borrow pit is
constructed by choosing the variational points of the ground
profile and dividing the area of the pit into rectangles of
unequal interval, the presented formula can be applied to
the case in which the pit is divided into a grid with
unequal intervals. From this study, the following comments
may be made:

1) The proposed method is applied to two examples and
the results show that it is generally better than the spot
height method, line of best fit method, Chen and Lin
method.

2) we propose an algorithm of finding a spline surface
which interpolates the given data and an appropriate
method to calculate the earthwork. We present some
computational results showing that our proposed method
provides Dbetter accuracy than Chen and Lin's method.

3) For maximum accuracy in estimating the volume of a pit
excvation, it is very important to select the proper points
(the variational point of the ground profile) to construct

the grid.

4) The mathematical models of the conventional methods
have a common drawback, ie, the modeling curves
form peak points at the joints. To avoid this drawback,
the cubic spline polynomial is chosen as the mathmatical
model of the new method. From the characteristics of
the cubic spline polynomial, the modeling curve of the
new method is smooth and matches the ground profile

well.
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