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Abstract : When we inject a current into an electrically conducting subject such as a human body, voltage and current density
distributions are formed inside the subject. The current density within the subject and injection current in the lead wires
generate a magnetic field. This magnetic flux density within the subject distorts phase of spin—echo magnetic resonance
images. In Magnetic Resonance Current Density Imaging (MRCDI) technique, we obtain internal magnetic flux density images
and produce current density images from J=v XB/y,. This internal information is used in Magnetic Resonance Electrical
Impedance Tomography (MREIT) where we try to reconstruct a cross—sectional resistivity image of a subject. This paper
describes numerical techniques of computing voltage, current density, and magnetic flux density within a subject due to an
injection current. We use the Finite Element Method (FEM) and Biot-Savart law to calculate these variables from
three-dimensional models with different internal resistivity distributions. The numerical analysis techniques described in this
paper are used in the design of MRCDI experiments and also image reconstruction algorithms for MREIT.
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INTRODUCTION In Magnetic Resonance Current Density Imaging (MRCDI),

we inject a current into an electrically conducting subject

such as a human body to quantitatively visualize internal

< ;ﬁf}f 290165 3 Qw;;ﬂﬁ ZJ;(J]Q]—FC ]"F‘-‘f;‘?i‘ current density distributions [1] -[5]. Injection currents
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RS ek AR through surface electrodes produce voltage and current
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inside the subject and lead wires induces a magnetic
field. We can measure the magnetic flux density within
the subject from MR phase images since this magnetic
field due to injection currents generates additional phase
changes. MECDI has finding many applications where we
need to inspect internal current density distributions espe—
cially in electrical stimulation of biological tissues[6, 7].

Lately, Magnetic Resonance Electrical Impedance Tom-
ography (MREIT) has been suggested to reconstruct
cross-sectional resistivity images of a subject [8]-{13] by
incorporating the conventional Electrical Impedance Tomo-
graphy (EIT) with MRCDI technique. MREIT is very
promising to reconstruct accurate cross-—sectional resistivity
images with a high spatial resolution since it enables us
to utilize the internal magnetic flux and/or current density
distribution cue to an injection current. Most reconstruction
algorithms in MREIT require a forward solver computing
internal current density and/or magnetic flux density
distributions due to an injection current. Lee et al. recen-
tly -developed a three-dimensional forward solver for MREIT
using the finite element method (FEM) and Biot-Savart
law([14].

In this paper, we focus our attention on the numerical
analysis of MRCDI technique to design experimental proce-
dures and find the required performance of the MRCDI
system. After we define the MRCDI problem, we will
describe the numerical techniques adopted in this paper. It
is a volume conductor problem where we must consider
distributions of voltage, current density, and also magnetic
flux density within an electrically conducting subject. In
addition, we must also include the lead wires attached to
electrodes on the surface of the subject in computing the
magnetic flux density.

METHODS
A. MRCD/I Problem Definition

Let QCIR? be an electrically conducting subject with
its boundary denoted by 4Q as shown in Fig. 1. In this
paper, we model the subject as a cubic body only for simpli-
city. A position vector in IR* is denoted as »= (x, v, 2).
When we inject a current I through electrodes EI and E2
attached on dQ, we can formulate the following elliptic

partial differential equation:

v[ e VV(r)] 0in Q 1)
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where o(7) and V(#») are resistivity and voltage distri-
bution in &, respectively, n is the outward unit normal
vector on dQ, and J is a magnitude of current density
due to the injection current I. Once we have found a
numerical solution V(#) of (1), we can compute the internal
current density distribution due to the injection current I as

Kﬁ:—v%ijﬁ @)

o(7,

Now, we denote the magnetic flux density at reQ as

B(»). As shown in Fig. 1, we consider two lead wires

carrying the injection current I from the infinity to

electrodes EI and EZ For the purpose of numerical
computations, we divide into three components as

3

B(n=B(nN+Bpr(nN+B,(7)

where Bfr) and B .(») are magnetic flux densities due

to J in Q and Tof the two lead wires in IR\Q, respec—
tively. From the Biot-Savart law [15, 16], we have

B{#)= f/( Il |3 a, (4)
B (n=4L [ ety =gl (5)
Br(A=4L [ Ka)x =Ll ©)

where is gy the permeability of free space and biological

tissues, L* are regions of the lead wires in IRs\LQ, and
a(7)is the unit vector in the direction of the lead wire
at veL*.

After we compute B(#), it must satisfy the following

equation:

J(N=—1vxB(» in Q 7
Ho

In MRCDI experiments, we compute J/2(») using (7)
from the measured B(#») [13]. In this paper, we use (7)
for the numerical error analysis of computational results
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since J(#) in (2) and J®(» in (7) must be the same. For
the compatibility of the solutions A ») and J5(»), we also
verify if

0in Q (8)

v-JnN=0and v JF»H=

are satisfied.
B. Numerical Solutions V(r) of and J(r)

In numerically solving (1), FEM can accommodate &
with arbitrary shape and (7). However, in this paper,
we use the cubic model (2L X2L x2L) with isotropic o(#»)
shown in Fig. 1 for simplicity. For the discretization of
the model into a finite element mesh, we use eight-node
hexahedral elements. Using the Galerkin method [16, 17],
we evaluate the 8X8 element matrix for each element.
For a mesh with N nodes and E elements, we compute
element matrices for all elements and assemble the N XN
master matrix Y in such a way we preserve the inter—
elements continuity of nodal voltage values. Then, we can
formulate the following linear system of equations providing

an approximate numerical solution of (1).
Yv=r—c 9)

where v is a NX1 node voltage vector and ¢ is a NX1
node current vector including the Neumann boundary
condition in (1). Lee et al. describes the details in using
FEM for the numerical solution of (1) [14]. After we com-
pute all nodal voltages from (9), we can easily compute
the current density J(r) in (2) for each element.

C. Numerical Solutions of B(r) and J5(r)

We compute the magnetic flux density B(r) in (3)
using (4)-(6). Assuming that the current density within
the e-th element does not change much for each element

in the mesh, we compute B;(7) with »€Q in (4) as

By(r) = (10)

i T — 7/(62))| ap'
“~

{9 is the center point of the e-th element, J'°

is the current density at »'?, and a0‘?

where 7
is the volume
of the element. In order to avoid the singularity where
the field point #» is equal to the source point 2, we let r

be all nodal points of the mesh.
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To compute B (7)) with = (x, v, 2= in (5) and
(6), we consider three different methods including analytic
formula, single-line FEM, and multi-line FEM method. In
the analytic formula method, we use the following
formula [18]:

B‘}F(x, v, @ =B;{x, », &+ B,;-(x, y, 2

_ M (Z 0 *x{z_ Ly _ Lty
i A+ 2P V(L—y)?+xi+22 V(L-y)l+xi+z

(11)

excluding two nodal points of »= (0, +L, 0) where
two lead wires are connected to the cubic model. In the
single-line FEM method, we divide the regions L* of
two lead wires into L line segments. We limit the length
of L® to ten times the dimension of &, that is, 20L
since the contribution from a line segment is inversely
proportional to the square of the distance between the
field and source point. Then, for »= (x, v, 2) = Q,

r—r?

B{(r) =B w+Bw = % zllayx - ag 12)

() i the center point and A/ is the length of

where 7.
the [-th line segment, respectively.

To describe the multi-line FEM method, we first define
two sets of nodal points ¥; = {all nodal points under E;}
and ¥, ={all nodal points under E2}. For each nodal
point in ¥ and ¥, we assume that a lead wire with the
length of 20L is attached. We assign the amount of current
in each lead wire as the value of the current in the corre-

sponding element of ¢ in (9). Then, for »= (x, v, 2) € £,

{w, 1)
0 — 7.
BA}I!‘(V) =B-o+Be= 4— f g Culty X 7,7(101){ al

(13

where W is the total number of nodal points in ¥ and
¥y cw is the amount of the distributed injection current
at the w-th node in ¥, and ¥y, and »*?) is the center

point of the [-th line segment connected to the w-th

node. Note that élcw=l. Since we compute the

magnetic flux density B(r) on all nodal points in &, we

can easily calculate J2(#) in (7).
Before we present numerical results, we note that diffe-
rent lead wire geometries produce different results of

J. Biomed. Eng. Res: Vol. 23, No. 4, 2002
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B(7) in Q as expressed in (5) and (6). However, Lee et
al. showed that the difference in B(#) due to changes in
lead wire geometry is a curl and divergence free vector
[14]. They also showed that /2(#») in (7) is only depen-
dent on the Neumann boundary condition in (1). This means
that the implication of different lead wire geometry affects
the computation of only B(#) not J(#). Therefore, the
simplest lead wire geometry in Fig. 1 is sufficient for the
computation of J2(#) even though the actual shape of each
lead wire is very different from the straight line. We
discussed the effects of lead wire geometry on the mea-
sured B(#) in [19]. We also showed that the error in B(7)
due to different lead wire geometry could be appropriately
handled in MREIT image reconstruction problems in [14].

Three methods in (10), (11), and (12) produce the same
Neumann boundary condition in (1) and this means that
we should get the same J%(») in theory. However, they
treat the singularity problem near electrode where the
denominators in (5) and (6) become very small or zero.
This requires us to check whether the compatibility

conditions in the numerical results of J%(») are satisfied.
D. Numerical Implementation

Fig. 2 shows three different models (300x300 X300

. (-L-L.L) (-L, é,L)

toy B IR\ ©
x R
I : I
—o0 > ' Q — 400
r re) 4N B a U
-y J.B
n I E2

(L-L~L) (L,L,-L)

Fig. 1. An electrically conducting body RCIR® with its
resistivity distribution o. Two highly conductive elect-
rodes £1 and E; are placed on its boundary 28 and we
inject a current / between £y and £ via two lead wires.

(a)

(b)
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mm) used in this paper. The models are equipped with
(9.4%X300 mm). The first
model in Fig. 2(a) is homogeneous with p(7)=0,=300 Q

two long surface electrodes

cm for any »=£. The second model in Fig. 2(b) contains
two cylindrical anomalies of 30 and 3,000 Qcm resistivity.
The third model in Fig. 2(c) mimics the human thorax
including two lungs (1,000 Qcm), heart (50 Qcm), and
spine (10,000 Qcm). For each model, the corresponding
finite element mesh contains 64X64%X35 elements (total
143,360 elements) and 152,100 nodes. Lee at al. showed
that the chosen mesh provides enough numerical accuracy
for applications in MRCDI and MREIT[14].

In obtaining numerical results described in the following
section, we set the injection current as 55 mA. For each
numerical result, we performed two compatibility tests.
One is to check if two current density distributions in (2)
and (7) are the same. The other is the agreement with the
continuity equations in (8). We performed all computations
using a PC (Precision 530MT, Dell Computer Co., USA)
with dual 1.7 GHz Xeon processors, 256 KB L2 cache, 1
GB of RDRAM, 18 GB of SCSI hard disk, and Windows
2000 Professional operating system. We used double
precision floating point variables for all calculations.

RESULTS
A. Homogeneous Model

In this section, we describe the numerical results of
three different methods in computing the magnetic flux
density in (11), (12), and (13) using the homogeneous
model in Fig. 2(a). Fig. 3(a) and (b) show the computed

B, and |/7, respectively, on the xy-plane with z=0 mm
using the analytic formula method in (11). In Fig. 3(b),
the current density near electrodes are over estimated
resulting in a large difference between J and J®. We also

found that v « /% is much greater than zero near elect-

Fig. 2. Thrse models used in numerical analyses of MRCDI. (a) Homogeneous model of 300 Qcm. (b) Inhomogeneous
model with two cylindrical anomalies of 30 and 3,000 Q@cm. (¢) Thorax model with two lungs (1,000 Qcm), heart (50 @

cm), and spine (10,000 Qcm).

oFEH A A3, A4E, 2002
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Fig. 3. Computed (a) B, and (b) |/?| on the xy-plane with z=0 mm in @ for the homogeneous model shown in Fig.

2(a) using the analytic formula method.

[Tesla]

15 15

(a)

Fig. 4. Computed (a) B, and (b) |/%| on the xy-plane with z=0mm in Q for the homogeneous model shown in Fig.

2(a) using the Single-line method.

[Tesla]

15 15

(b)

Fig. 5. Computed (a) B, and (b) |J?| on the xy-plane with z=0mm in & for the homogeneous model shown in Fig.

2(a) using the multi-line method.

rodes due to the singularity at the interface between
electrodes and lead wires.

Fig. 4(a) and (b) show the computed B, and |/7,
respectively, on the xy-plane with z=0mm using the
single-line method in (12). We could also find that the
single-line method fails to treat the singularity problem

appropriately from a large difference between J and J®
and nonzero v - J® near electrodes.
Fig. 5(a) and (b} show the computed B, and |/7|, res-

pectively, on the xy-plane with z=0 mm using the multi-
line method in (13). Erroneously overestimated peaks near
electrodes in Fig. 3 and 4 are now replaced by peaks

J. Biomed. Eng. Res: Vol. 23, No. 4, 2002
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with correct amplitudes in Fig. 5. This implies that the mean-squared (rms) error between J and J°. Two compa-
multi-line method effectively avoids the singularity problem tibility conditions in (8) are also satisfied with negligibly
near electrodes. We could find a negligibly small root- small rms errors (10%r 107 mA/mmd). Therefore, we

[mA/mm?]

x102
1200 04
9004 -1
-2
600 -
300+ -4 -15
0 5.
_15 -15
15 15
(b)

[Tesla}

[mA/mm? .-

x107 .

15 15
(c)

[Tesla]
" 19-'“{“'

[Tesla]
x 10

2 1
0
0 15 0.5 -15
RN R
-15 -15
15 15 15 15
(e) (f)

15 15 15 15

(@) (h)

Fig. 6. Computed (a) V, (b) J., and (c) J, on the xy-plane with z=0mm in Q for the model with two cylindrical
anomalies shown in Fig. 2(b). Computed (d) B, (e) B, (f) B,, (g) JZ and (h) J& on the same plane for the same

model.

o|38h3] A #1234, A4E, 2002



ol

32 A7E

choose the multi-line method in computing B(#) in the

remaining parts of this paper.

B. Inhomogeneous Model with Two Cylindrical Ano-
malies

Fig. 6(a) shows the computed voltage on the xy-plane
with z=0 mm in Q for the model in Fig. 2(b). Fig. 6(h)
and (c) show the computed /. and J,, respectively. The

computed value of J, was negligibly small (~107Y mA/
mm?). Fig. 6(d), (), and (f) show the computed B, B,,
and B,, respectively. Since there is no change in resis-
tivity distribution along z-direction and we computed B on
the middle plane (z=0 mm), B, and B, are much smaller
than B,. Fig. 6(g) and (h) show the computed J2 and Ji,
respectively. The computed value of J? was negligibly
small (~10° mA/mm?. We found that the compatibility
condition of J(r)=J%(r) and continuity equations of
v - N=0 and v - JB(»)=0 are all satisfied with negligi~
bly small values of rms errors (10 or 10°%.

C. Thorax Model

Fig. 7(a) shows the resistivity distribution of the thorax

AdHel 24 H4 275
model in Fig. 2(c) on the xy-plane with z=0 mm in Q.
Fig. 7(b) is the computed voltage on the same plane. Fig.
7(c) and (d) show the computed J, and J,, respectively.
The computed value of J, was negligibly small (~107"
mA/mm’) since the resistivity distribution is symmetric
with respect to the plane along z-direction. Fig. 8(a), (b),
(c) the B, and B,

respectively. Since we computed B on the middle plane (z

and show computed B,

=0mm), and are much smaller than B, Fig. 8(d) and (e)
show the computed J? and J%, respectively. The computed
value of JZ was negligibly small (~10° mA/mm?. Fig.
8(f) shows the vector plot of the current density JZin the
same xy-plane. We found that the compatibility condition
of J(»H=J5(# and continuity equations of v - J#)=0 and
v - JA(9)=0 are all satisfied with negligibly small values
of rms errors.

Fig. 9 (a) shows the computed voltage on the xy-plane
with z=4285mm in Q. Fig. 9(), (¢), and (d) are
computed B,, B,, and B, on the same plane. We can see

that B, and B, on this plane are much larger than B, and
B, on the xy-plane with z=0mm. This implies that B,

[mA/mm?] -

R
b W N = o

15 15

(c)

(d)

Fig. 7. (a) Resistivity distribution on the xy-plane with z=0mm of the thorax model in Fig. 2(c). Computed (b) V, (c)

J., and (d) J, on the same plane.

J. Biomed. Eng. Res: Vol. 23, No. 4, 2002
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and B, are relative small compared to B, only when the
current density distributions are symmetric along z-direction
with respect to the plane we compute the magnetic flux
density. Fig. 9(e), (f), and (g) show the computed 2, J7,
and J2, respectively. We can see that J? is no longer
negligible since there must exist current densities out of
the plane. Fig. 9(h) shows the vector plot of JZ on the
same plane. The compatibility condition and continuity
equations are also all satisfied with negligibly small rms
errors in this plane.

[Tesla]

[Tesla}
7

x10"

15 15

(c)

[mA/mm?}
.3: "

Y4 - 009 - 442 - NU2

DISCUSSION

For the computation of B(») with r=Q in (3), we
must include the effect of lead wires. As shown in the
previous section, we found that both analytic formula and
single-line FEM methods provide wrong numerical results
of B(») in Q. We believe that these two methods fail
without properly handling the singularity at two nodal
points of »=(0, *L, 0). However, using more sophi-
sticated electrode models including the conditions in (8),
these methods may be able to pass the compatibility
tests.

[Tesla]
X 10ﬁ

-15

15 15

[mA/mm?]
x 107

Fig. 8. Computed (a) B,, (b) B,, and (¢) B, on the xy-plane with z=0mm in Q for the thorax model shown in Fig.

2(c). Computed (d) JZ and (e) J? on the same plane. (f) Vector plot of J® on the same plane.
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[Tesla)
x10%:

.45

(@) (b)

[Tesla] [Tesla]

15 15 15 15

[mA/mm?2] )

15 15

(e) (f)

[mA/mm?] .7

Fig. 9. Computed (a) V, (b) B,, (¢} B,, and (d) B, on the xy-plane with z=42.85mm in Q for the thorax model

shown in Fig. 2(c). Computed (e) J2, () ]f, and (g) JZ on the same plane. (h) Vector plot of JZ on the same plane.

As described in the previous section, the multi-line numerical results though it requires much more amount
FEM method in computing B(#) in (3) provides correct of computations. In [14], we showed that it is possible to

J. Biomed. Eng. Res: Vol. 23, No. 4, 2002
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significantly reduce the amount of computations by adopting
an analytical integration formula in x- and y-direction.

For the injection current of 55 mA, we found that B,
is in the order of 10" Tesla. Depending on the resistivity
distribution and the xy-plane where we compute, the
magnetic flux density, we found that B, and B, are in
the range of 10" to 10® Tesla. As described in [13, 19],
even though we can measure the magnetic flux density
in this range using a 0.3 Tesla MRCDI system, the SNR
is relatively low. Since we need to differentiate B(#) to
obtain (7 as in (7), we want a higher SNR in the
measurements of B(#). Furthermore, we must reduce the
amount of injection current to less than 5 mA when we
apply this rechnique to a human subject. This means that
we should use an MRCDI system based on an MRI
system with much higher (at least 1.5 Tesla) main
magnetic field intensity. We will utilize the numerical
analysis methods described in this paper to derive the
requirements of an MRCDI system to obtain reliable
magnetic flux density data.

In the conventional MRCDI technique, we can measure
only one component of B(#) since MR phase images
contain the information on the component of B(#) that is
parallel to the main magnetic field of the MRI system.
This means that we must rotate the subject in order to
acquire all three components of B(#) as is done in [13].
The numerical results in the previous section indicate that
B, is always larger than B, and B,. Therefore, we are
developing a new MRCDI technique where we can recon-
struct a cwrent density distribution based on the measure-

ment of only B, in multiple slices along z-direction.

CONCLUSION

In this paper, we described the three-dimensional
numerical analysis method in MRCDI. We found that it is
critical to correctly handle the singularity problem near
electrodes in computing the internal magnetic flux density
due to an injection current. Using the method described
in this paper, the computed magnetic flux density contains
an error vector that is curl and divergence free. However,
the computed current density from the magnetic flux
density should contain no other error except numerical
errors. Therefore, this method is sufficient for MRCDL

The numerical analysis method described in this paper
will be used in our future studies including the design of
MRCDI procedure and verification of experimental results.

o] F3k3 Al 1 #2349, Ald=, 2002
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The numerical analysis of MRCDI technique provides us
much insight to devise a new innovative method of
internal current density imaging without subject rotation.
We plan to focus our research efforts in mathematical
analysis and experimental venification of this new technique.
Internal current density imaging without subject rotation
will be a valuable tool in functional imaging such as
MREIT. We speculate that it may also provide new
diagnostic information on internal temperature, ion
concentration, tissue composition, and others.
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