Construction and Characterization of a Recombinant Bioluminescence Streptomycetes for Potential Environmental Monitoring

  • Park, Hyun-Joo (Department of Environment Science, Hankuk University of Foreign Studies) ;
  • Hwang, Keum-Ok (Department of Environment Science, Hankuk University of Foreign Studies) ;
  • Kim, Eung-Soo (Division of Chemical Engineering and Biotechnology, Inha University)
  • Published : 2002.08.01

Abstract

Bacterial bioluminescence has been known to be a highly valuable reporter system for its potential application as an effective and simple environmental monitoring method for toxic compounds. In this short report, we constructed a streptomycetes-Escherichia coli shuttle vector-containing bioluminescence system and evaluated its potential application for toxic compounds monitoring. The luxAB biolurninescence genes from Vibrio harveyi were cloned into a streptornycetes-E. coli shuttle vector (named pESK004) and functionally expressed in Streptomyces lividans. The recombinant S. lividans containing pESK004 exhibited an optimal biolurninescence at the optical density ($OD_{600\;nm}$) of 0.4-0.5 and aldehyde concentration of 0.005%. When the recombinant bioluminescence streptomycetes was exposed to a toxic compound such as heavy metals, chlorinated phenols, or pesticides, the bioluminescence was decreased proportionally to the concentration of toxic compound in the assay mixture. The $EC_{50}$ (effective concentration to decrease 50% of the bioluminescence prior to exposure) values in the recombinant biolurninescence streptomycetes for mercury, 2,4-dichlorophenol, and malathion were measured at 2.2 ppm, 144.0 ppm, and 82.4 ppm, respectively. The degree of sensitivity and specificity pattern toward these toxic compounds characterized in this recombinant bioluminescence streptomycetes were unique when compared with previously reported bacterial bioluminescence systems, and this revealed that a recombinant bioluminescence streptomycetes might provide an alternative or complementary system for potential environmental monitoring.

Keywords

References

  1. J. Microbiol. Biotech. v.10 Characterization of benzoate degradation via ortho-cleavage by Streptomyces setonii An, H.-R.;H.-J. Park;E.-S. Kim
  2. Can. J. Microbiol. v.29 Degradation of phenol by Streptomyces setonii Antai, S. P.;D. L. Crawford https://doi.org/10.1139/m83-022
  3. Appl. Environ. Microbiol. v.64 Identification and quantitation of toxic chemicals by use of Escherichia coli carrying lux genes fused to stress promoters Ben-Israel, O.;H. Ben-Israel;S. Ulitzer
  4. Environ. Toxicol. Chem. v.14 Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria Benton, M. J.;M. L. Malott;S. C. Knight;C. M. Cooper;W. H. Benson https://doi.org/10.1897/1552-8618(1995)14[411:IOSCOA]2.0.CO;2
  5. Developmental Biology of Prokaryotes Chater, K. F.;M. J. Merrick;Parish, J. H.(ed.)
  6. Chemosphere v.37 Biodegradation of the herbicide diuron in soil by indigenous actinomycetes Esposito, E.;S. M. Paulillo;G. P. Manfio https://doi.org/10.1016/S0045-6535(98)00069-1
  7. J. Bacteriol. v.172 Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria Herrero, M.;V. Lorenzo;K. Timmis https://doi.org/10.1128/jb.172.11.6557-6567.1990
  8. Proc. R. Soc. Lond. Ser. v.B235 Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production Hopwood, D. A.
  9. A Laboratory Manual Genetic Manipulation of Streptomyces Hopwood, D. A.;M. J. Bibb;K. F. Chater;T. Kieser;C. J. Bruton;H. M. Kieser;D. J. Lydiate;C. P. Smith;J. M. Ward;H. Schrempf
  10. J. Microbiol. Biotech. v.9 Isolation and characterization of soil Streptomyces involved in 2,4-DCP oxidation Kang, M.;J. K. Kang;E.-S. Kim
  11. Ecotoxicol. Environ. Safety v.30 Review of whole-organism bioassays: Soil, freshwater sediment, and freshwater assessment in Canada Keddy, C. J.;J. C. Greene;M. A. Bonnell https://doi.org/10.1006/eesa.1995.1027
  12. Water Poll. Res. J. Canada v.26 Photobacterium phosphoreum toxicity data index Klaus, L. E.;V. S. Palabrica
  13. Ecotoxicol. Environ. Safety v.28 The environmental risks of industrial waste disposal: An experimental approach including acute and chronic toxicity studies Lambolez, L.;P. Vasseur;J. F. Ferard;T. Gisbert https://doi.org/10.1006/eesa.1994.1056
  14. Lett. Appl. Microbiol. v.22 Isolation and partial characterization of cellulose-degrading strain of Streptomyces sp. LX from soil Li, X.;P. Gao https://doi.org/10.1111/j.1472-765X.1996.tb01145.x
  15. Master thesis, Hankuk University of Foreign Studies Characterization of the physiological and ecological responses of environmental bacteria under various stresses Park, K. J.
  16. Can. J. Microbiol. v.27 Streptomyces setonii: Catabolism of vanillic acid via guaiacol and catechol Pometto Ⅲ, A. L.;J. B. Sutherland;D. L. Crawford https://doi.org/10.1139/m81-097
  17. Biotechniques v.19 Rapid bacterial permeabilization reagent useful for enzyme assays Schupp, J. M.;S. E. Travis;L. B. Price;R. F. Shand;P. Keim
  18. Biodegradation v.7 Metabolism of twelve herbicides by Streptomyces Shelton, D. R.;S. Khader;J. S. Karns;B. M. Pogell https://doi.org/10.1007/BF00114625
  19. J. Bacteriol. v.174 Construction and application of plasmid- and transposon- based promoter-probe vectors for Streptomyces spp. that employ a Vibrio harveyi luciferase reporter cassette Sohaskey, C. D.;H. Im;A. T. Schauer https://doi.org/10.1128/jb.174.2.367-376.1992
  20. Can. J. Microbiol. v.29 Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii Sutherland, J. B.;D. L. Crawford;A. L. Pometto Ⅲ https://doi.org/10.1139/m83-195
  21. Environ. Toxicol. Chem. v.14 A comparison standard acute toxicity tests with rapid-screening toxicity tests Toussaint, M. W.;T. R. Shedd;W. H. van der Schalie;G. R. Leather https://doi.org/10.1897/1552-8618(1995)14[907:ACOSAT]2.0.CO;2
  22. Biotechnol. Prog. v.13 2,4-Dichlorophenol degradation using Streptomyces viridosporus T74 lignin peroxidase Yee, D. C.;T. K. Wood https://doi.org/10.1021/bp960091x