Direct Evidence for the Radioprotective Effect of Various Carbohydrates on Plasmid DNA and Escherichia coli Cells

  • Ryu, Hwa-Ja (Department of Fine Chemical Engineering, Chonnam National University) ;
  • Yi, Kyung-Eun (Department of Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Do-Won (Department of Physics, and East Coastal Marine Bioresources Research Center, Kangnung National University) ;
  • Jung, Yun-Dae (Department of Physics, Kangnung National University) ;
  • Chang, Suk-Sang (Pohang Accelerator Laboratory, Pohang University of Science and Technology) ;
  • Seo, Eun-Seong (Department of Materials and Biochemical Engineering, Chonnam National University) ;
  • Lee, Ki-Young (Department of Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Marceau-Day, M.L. (Center for Advanced Microstructures and devices, Louisiana State University) ;
  • Kim, Do-Man (Department of Faculty of Applied Chemical Engineering, Chonnam National University)
  • Published : 2002.08.01

Abstract

Damage to cells exposed to radiation is primarily attributed to direct effects on the structure of cellular DNA. Radiation-induced damage of pBluescript SK plasmid DNA and Escherichia coli $DH5\alpha$ were examined in the presence of various branched oligosaccharides, polysaccharides, and/or 8-MOP (8-methoxypsoralen). Branched oligosaccharides efficiently protected DNA and cells exposed to ultrasoft X-ray and UV irradiation. In the presence of 0.2% (w/v) branched oligosaccharides and polysaccharides, DNA can be protected from damage due to W and ultrasoft X-ray by a factor of 1.3-2.1 fo1d and 3.2-8.3 fold, respectively. The protective effect of cells exposed to UV or ultrasoft X-ray was also observed by branched oligosaccharides. The combination of MOP, a photoreagent, with carbohydrates increased the protective effects for DNA and cells, compared with that of a single use of MOP or carbohydrate alone.

Keywords

References

  1. Br. J. Dermatol. v.144 Genital squamous cell carcinoma in men treated by photochemotherapy. A cancer registry-based study from 1978 to 1998 Aubin, F.;E. Puzenat;P. Arveux;E. Quencez;P. Humbert https://doi.org/10.1046/j.1365-2133.2001.04231.x
  2. Cellular Radiation Biology The study of radiosensitive structures with low voltage electron beams Cole, A.
  3. Curr. Med. Chem. v.8 Photochemotherapy in the treatment of cancer Dalla, V.-L.;M. S. Marciani https://doi.org/10.2174/0929867013372076
  4. Br. J. Dermatol. v.144 Cream psoralen plus ultraviolet A therapy for granuloma annulare Grundmann-Kollmann, M.;R. Ochsendirf;T. M. Zollner;I. Tegeder;R. Kaufmann;M. Podda https://doi.org/10.1046/j.1365-2133.2001.04188.x
  5. Kor. J. Appl. Microbiol. Biotechnol. v.27 Development of a mixed-culture fermentation process and characterization for new oligosaccharides and dextran using Lipomyces starkeyi and Leuconostoc mesenteroides Heo, S.-J.;D. Kim;I. S. Lee;P. S. Chang
  6. Br. J. Dermatol. v.101 5-Methoxypsoralen(bergapten) in photochemotherapy of psoriasis Honigsmann, M.;E. Jaschke;F. Gscnait;W. Brenner;P. O. Fritsch;K. Wolff https://doi.org/10.1111/j.1365-2133.1979.tb00014.x
  7. J. Microbiol. Biotechnol. v.9 Facile purification and characterization of dextransucrase from Leuconostoc mesenteroides B-512FMCM Kim, D.;D. W. Kim
  8. J. Microbiol. Biotechnol. v.10 Cloning and sequencing of the α 1→6 dextransucrase gene from Leuconostoc mesenteroides B-742CB Kim, H.;D. Kim;H. J. Ryu;J. F. Robyt
  9. J. Microbiol. Biotechnol. v.11 Production of maltopentaose and biochemical characterization of maltopentaose-forming amylase Kim, Y. M.;H. J. Ryu;S. O. Lee;E. S. Seo;S. Y. Lee;S. K. Yoo;D. L. Cho;D. Kim;A. Kimura;S. Chiba;J. Lee
  10. Int. J. Radiat. Biol. v.66 Action spectra for single- and double-strand break induction in plasmid DNA: Studies using synchrotron radiation Michael, B. D.;K. M. Prise;M. Folkard;B. Vojnovic;B. Brocklehurst;I. H. Munro;A. Hopkark https://doi.org/10.1080/09553009414551641
  11. Photochem. Photobiol. v.54 Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelength (50-300nm) obtained with synchrotron radiation Munakara, N.;M. Saito;K. Hieda https://doi.org/10.1111/j.1751-1097.1991.tb02087.x
  12. Proc. Natl. Acad. Sci. USA v.93 Signature p53 mutation at DNA cross-linking sites in 8-methoxypsoralen and ultraviolet A (PUVA)-induced murine skin cancers Natarag, A. J.;H. S. Black;H. N. Ananthaswamy
  13. Proc. Natl. Acad. Sci. USA v.78 Dimethyl sulfoxide prevents DNA nicking mediated by ionizing radiation or iron/hydrogen peroxide-generated hydroxyl radical Repine, J. E.;O. W. Pfenninger;D. W. Talmage;E. M. Berger;D. E. Pettijohn https://doi.org/10.1073/pnas.78.2.1001
  14. Radiat. Res. v.64 Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks of killing of mammalian cells Roots, R.;S. Okada https://doi.org/10.2307/3574267
  15. Int. J. Radiat. Biol. v.21 Protection of DNA molecules of cultured mammalian cells from radiation-induced single-strand scissions by various alcohols and SH compound Roots, R.;S. Okada https://doi.org/10.1080/09553007214550401
  16. Arch. Dermatol. v.134 Risk squamous cell carcinoma and methoxysalen (psoralen) and UV-A radiation (PUVA): A meta-analysis Stern, R. S.;E. J. Lunder https://doi.org/10.1001/archderm.134.12.1582
  17. J. Am. Acad. Dermatol. v.44 The risk of melanoma in association with long-term exposure to PUVA Stern, R. S. https://doi.org/10.1067/mjd.2001.114576
  18. Cellular Radiation Biology Szybalski, W.;Z. Opera-Kubinska
  19. Biosci. Biotech. Biochem. v.60 Protecting effect of a green tea percolate and its main constituents against gamma ray-induced scission of DNA Yoshioka, H.;G. Akai;K. Yosinaga;K. Hasegawa;H. Yoshioka https://doi.org/10.1271/bbb.60.117
  20. Biosci. Biotech. Biochem. v.61 Protection by treahalose of DNA from radiation damage Yoshinaga, K.;H. Yoshioka;H. Kurosaki;M. Hirasawa;M. Uritani;K. Hasegawa https://doi.org/10.1271/bbb.61.160