Dynamic Slicing using Dynamic System
Dependence Graph

Soon-Hyung Park’ and Man-Gon Park’

ABSTRACT

Traditional slicing techniques make slices through dependence graph and improve the accuracy of slices.
However, traditional slicing techniques require many vertices and edges in order to express a data
communication link because they are based on static slicing techniques. Therefore the graph becomes
very complicated.

We propose the representation of a dynamic system dependence graph so as to process the slicing
of a software system that is composed of related programs in order to process certain jobs. We also
propose programs on efficient slicing algorithm using relations of relative tables in order to compute
dynamic slices of a software system.

Using a marking table from results of the proposed algorithm can make dynamic system dependence
graph for dynamic slice generation. Tracing this graph can generate final slices. We have illustrated our
example with C program environment.

Consequently, the efficiency of the proposed dynamic system dependence graph technique is also
compared with the dependence graph techniques discussed previously. As the results, this is certifying
that the dvnamic system dependence graph is more efficient in comparison with system dependence graph

54 Axd 34 248 A48H 51 &etold

+ +
[=
b

o9k

-
- gfgks

718 getoly ZIYEL EtolaE WA A4H setol2 AFAE A T4 THZE AT

oh 2y, J1Ee) Be Sl YIMEE $A Sato)y el vitE T vy §4 YAE X

WEd Be HHE(vertices)? 7HdE(edges)S HRE v} 2= 1 A= A§ B3
AW Z2a Al fh 2ZEY o] Ehol g Hsr] A8 & =RoME FHA=AT S Y

E AgET a8 x, Ao ALY FF gelo] A8 AHEEY] Y3 #HE HolEEY RARE o8
EEAQ €30 dnFE ALI

9 gotolze 44 A% FAN2PFZEIAIE AUD FuYZo2HE Fo7 Yol RS
ARSI A o), EElol A HF A o] AUZE FAFLEN Ao} AEH R AgH FHA
2¥lEZ&£TT Py EEA4S V€Y FEaAZ J)YH vmE Yo

Key words: program slicing, dynamic program slicing, program dependence graph, system dependence

graph, dynamic system dependence graph

|

1. Introduction gram that potentially affect the values computed

at some point of interest referred to as a slicing

A program slice consists of the parts of a pro- criterion. The task of computing program slices is

"RAagsn AU AAABEPREAZER called program slicing. Namely, program slicing is
a method of finding all statements in program P

332 H2EDIOES =2X Hb5H M3Z(2002. 6)

that may directly or indirectly affect the value of
a variable var at some point p [1-4]. A system
slicing is a slicing of multi-procedure programs.
The term system will be used to emphasize a
program with multiple procedures.

A slicing is divided into a static slicing and a
dynamic slicing according to the existence of
actual execution by input values. The static slice
proposed by Weiser is the set of all statements that
might affect the value of a given variable oc-
currence. In this paper, we investigate the concept
of the dynamic slice consisting of all statements
that actually affect the value of a variable occur-
rence for a given program input[5-7].

Traditional slicing techniques used dependence
graphs in order to compute slices accurately.
However, traditional dependence graphs, especially
a system dependence graph is very complicated
because it requires a lot of vertices and edges in
order to indicate data communication between two
procedures. Therefore, it is difficult for the pro-
grammer and the tester to apply these techniques.
More efficient dependence graph techniques were
in focus in previous studies. If the number of
source programs is one, the graph which computes
static slices is called a program dependence graph;
if the number of source programs is more than one,
the graph which computes static slices is called a
system dependence graph[8-11].

In this paper, we proposed the notation that
represents a dynamic system dependence graph
and the efficient slicing algorithm using the re-
lation of related tables to compute dynamic slices
in a software system. We can make a dynamic
system dependence graph to generate dynamic
slices using the marking table that is generated as
result of the execution of this algorithm.

In section 2, we review the dependence graphs
concerning traditional slicing approaches. In
section 3, we introduce the algorithm proposed for
dynamic system slicing and the dynamic system
dependence graph. In section 4, we describe and

illustrate about the dynamic system dependence
algorithm. The slicing technique is also presented

and compared with traditional method, in section 5.

2. Dependence Graph

We use dependence graph notation traditionally
in order to confirm the generation of correct
program slices. Therefore, many types of depen—
dence graph notation are introduced according to
advanced program slicing techniques. In this
section, we explain dependence graphs so as to
express the traditional program slicing.

The static slice proposed by Weiser is the set
of all statements that might affect the value of a
given variable occurrence. It can be computed
using the program dependence graph technique or
the system dependence graph technique. The
dynamic slices consist of all statements that ac—
tually affect the value of a variable occurrence for
a given program input. Thus, dynamic dependence

graph technique can produce slices.

2.1 Program Dependence Graph Technique

A program dependence graph technique pro-
posed by Susan Horwitz, Tomas Reps and David
Binkley is the method to compute slices through
data flow analysis and control flow analysis. It has
two types of directed edges, namely data-dependence
edges and control- dependence edges. A data-
dependence edge from vertex v; to vertex v; implies
that the computation performed at vertex v; directly
depends on the value computed at vertex v;. More
precisely, it means that the computation at vertex
v; uses a variable, var, that is defined at vertex uvj,
and there is an execution path from v; to v; along
which var is never redefined. A control-dependence
edge from v; to v; means that the node vi may or
may not be executed depending on the boolean

outcome of the predicate expression at node v;
[8-91].

Dynamic Slicing using Dynamic System Dependence Graph 333

2.2 System Dependence Graph Technique

A system dependence graph contains the pro-
gram dependence graph that expresses the main
program of a system, the procedure dependence
graph, which express a collection of auxiliary
procedures of system, and the some additional
edges. Additional edges can be classified as follows:
(1) edges that express direct dependence passing
between call statement and called procedure and
(2) transitive flow dependences due to calls.

In addition, there are five new kinds of vertices
being used in a program dependence graph. A call
statement is represented using a call vertex.
Parameter passing is represented using four kinds
of parameter vertices. On the calling side, par-
ameter passing is represented by actual-in and
actual-out vertices, which are control dependent on
the call vertex. In the called procedure, parameter
passing is represented by formal-in and formal-out
vertices, which are control dependent on the pro-
cedure’s entry vertex[12-13]. But the graph is
further complicated because the number of vertices
increase in order to add vertices as much as two
times and because the edges between them is
connected.

2.3 Dynamic Dependence Graph Technigue

A dynamic dependence graph represents nodes
with dependence edges based on the criterion node
after the generation execution history for input
value given. A new node for every occurrence of
a statement in the execution history may need to
be created if another node has the same transitive
dependencies[14].

A slicing criterion of program P executed on
input x is a triple C=(x, I, V), where I is an
instruction at position g on H and V is a subset
of variables in P. When executed on program input
x, we produce an execution history H’, for which
there exists the corresponding execution position
g’ such that the value of v of I? in H, equals the
value of v of I in H.I5].

We denote the execution history of the program
under the given test-case by the sequence <ui, vy,
..... ,un> of vertices in the program dependence
graph appended in the order in which they are
visited during execution. Node Y at position p in
H.(ie., H{(p) = Y) will be written as Y”. We use
superscripts to distinguish between multiple occur—
rences of the same node in the execution history
[3,7].

3. Dynamic System Slicing Technique

A dynamic system dependence graph that we
propose is a technique that it is possible to re-
present concepts of system dependence. A concept
of dynamic system dependence graph is based on
that of dynamic slicing technique.

A traditional system dependence graph tech-
nique is complicated when it represents multi-
procedure programs. So we propose an efficient
dynamic system dependence graph. A size of
complexities of dynamic system dependence graph
is smaller in comparison with system dependence
graph. A final aim of program slicing is to reduce
size of slices or dependence graph.

The procedure that computes dynamic slices
using the proposed dynamic system dependence
graph is composed of five steps. These are:

(1) system node analysis

(2) system execution history analysis

(3) dynamic system dependence algorithm ap-
plication

(4) dynamic system dependence graph gener—
ation

(5) sliced program generation

3.1 System Node Analysis Step

The system node analysis step draws up the
table related node for the source program. A table
related node is a set of the components of nodes.
It is composed of node number, node type, DEF,

334 2EIDICIoEE =2X M52 M3%(2002. 6)

REF and dffiliation module number(A.M.N).

(1) Node Number
Sequential number of nodes that compose of
a system
(2) Node Type
The nodes that are composed of system are
classified by eight kinds; procedure name,
input, print, assign, repeat, select, call, return.
(3) DEF
The set of variables whose values are
defined.
(4) REF
The set of variables whose values are used.
(5) Affiliation Module Number
Number of procedure name node among
nodes in affiliated procedure.

3.2 System Execution History Analysis
Step

The system execution history analysis step
draws up the execution history table and the path
table related module after analysis of the execu-
tion history.

(1) Execution History Table

The execution history table is a set of nodes
which are visited during execution and is com-
posed of node execution number(N.E.N), node
number, and dffiliation module execution order
(A.M.E.O). The node execution number represents
execution history order, and node number is equal
to number of nodes in node table related. The
dffiliation module execution order means an order
of the node that contains procedure name in
execution history table.

(2) Path Table Related Module

A path table related module is a set of the
movement paths for variables to be connected
within the inter-procedures that occurred during
program execution. It is composed of an affiliation
module execution order(A.M.E.O), an dffiliation

module number(A.M.N), and some path orders.
The path order contains a variable name(V.N) and
a variable affiliation module number(V.A.M.N).
The dffiliation module execution order and the
dffiliation module number mean the execution
order in execution history according to procedure
call in execution history table and the node number
which contains affiliated procedure name. The
variable names are stored as the linked datum
about parameter variables. The variable affiliation
module number is node number in related node
table that contains related variable name.

3.3 Dynamic System Dependence Algorithm
Application Step

The dynamic system dependence algorithm
application step is a step that produces a marking
table to extract dynamic slices. A marking table
is composed of node execution orders(N.E.O),
node numbers, markings. The marking algorithm
proposed below and Fig. 1 denotes the relationship
diagram of table used in algorithm.

procedure Main()
read SlicingBaseVar,
SlicingBaseVarNodeExeOrd
icnt = BaseVarNodeExeOrd
NodeExeOrd ExeHistTb{ = icnt
while NodeExeOrd ExeHistTbl not = “ " do
BaseVar.BaseVarTbl = SlicingBaseVar
NodeNum.NodeRelatedTbl = NodeNum. ExeHistThl
while NodeNum.NodeRelatedTbl not = “ " do
BaseAfanModNum.BaseVarTbl =
AfanModNum. NodeRelatedTbl
end while
write BaseVar.BaseVarTbl,
BaseAfanModNum.BaseVarTbl
end while
call FindFirstDef()
call FindSlice()
end.

procedure FindFirstDef()
NodeNum.NodeRelatedTbl =
NodeNum.ExeHistTbhl
while NodeNum NodeRelatedTbl not = “ " do
if NodeType.NodeRelatedTbl = ‘assign’
then call AssignProc()

Dynamic Slicing using Dynamic System Dependence Graph

335

NodeRelatedTbl ExeHistTbl ModRelatedPathTbl
NodeNum NodeExeOrd AfanModExecOrd
PathNum
NodeType NodeNum SerialNum
AfanModNum
anivlo AfanModExecOrd AfanModNum
VarName
DefRelatedDetail RefRelatedDetail BaseVarTbl
NodeNum NodeNum
DefOrd RefOrd BaseVar
VarName VarName BaseAfanModNum
Fig. 1. Table relationship diagram
end if while Seria/Num.ModRelatedPathThl not = “ " do
end while BaseVar. BaseVarThl = VarName. ModRelatedPathThl
end. BaseAfanModNum.BaseVarTbl =

procedure FindSlice()
while icnt > 1 do

AfanModNum. ModRelatedPathTbl
write BaseVar.BaseVarTbhl ,

BaseAfanModNum.BaseVarTbl

icnt = icnt - 1 end while
NodeNum. NodeRelatedTb! = end while
NodeNum. ExeHistTbl end while
while NodeNum.NodeRelatedTbl not = “ " do end.

case NodeType NodeRelatedTbl
: ‘procedure name’
then call ProcedureProc()
: ‘call’ then call CallProc()
¢ 'read’ then call ReadProc()
: ‘write’ then call WriteProc()
: ‘assign’ then call AssignProc()
: ‘repeat’ then call ControlProc()
: 'selection’ then call ControlProc()
end case
end while
end while

end.

procedure ProcedureProc()
AfanModExecOrd ModRelatedPathTbl =
AfanModExecOrd ExeHistTb]
AfanModNum.ModRelatedPathTbl =
AfanModNum.NodeRelatedTbl

procedure CallProc()

end.

procedure ReadProc()
AfanModExecOrd ModRelatedPathTbl =
AfanModExecOrd ExeHistTbi
AfanModNum.ModRelatedPathThl =
AfanModNum. NodeRelatedTbl

while PathOrd.ModRelatedPathTbl not = “ ” do
while NodeNum.DefRelatedDetail not = “ ” do

while PathOrd ModRelatedPathTb! not = “ " do

VarName.ModRelatedPathTbl=BaseVar. BaseVarTbhl

AfanModNum.ModRelatedPathTbh! =
BaseAfanModNum.BaseVarThl

BaseVar.BaseVarTbl =
BaseAfanModNum.BaseVarTbl = “ "
SerialNum = SerialNum + 1

end

VarName. ModRelatedPathTbl =
VarName.DeflRelatedDetail
AfanModNum.ModRelatedPathTbl =
AfanModNum.NodeRelatedTbl
while SerialNum.ModRelatedPathTb! not = “ 7 do
BaseVar.BaseVarTbl =
BaseAfanModNum.BaseVarTbl =

end while
end while
while

end.

procedure WriteProc()
while SerialNum ModRelatedPathTbl not = “ " do end

procedure AssignProc()
AfanModFExecOrd ModRelatedPathTbl =

336 gZEOICIoES =2X M53A M3=(2002. 6)

AfanModExecOrd. ExeHistTbl
AfanModNum ModRelatedPathTbl =
AfanModNum NodeRelatedThl
while PathOrd ModRelatedPathTbl not = “ " do
while NodeNum.DefRelatedDetail not = “ 7 do
VarName.ModRelatedPathTbhl =
VarName. DefRelatedDetail
AfanModNum ModRelatedPathTb! =
AfanModNum NodeRelatedTbl
while SerialNum ModRelatedPathTbl not = “ 7 do
BaseVar.BaseVarTbl = “
BaseAfanModNum.BaseVarThl = * "
while NodeNum.RefRelatedDetail not = “ " do
BaseVar.BaseVarThl =
VarName.RefRelatedDetail
BaseAfanModNum.BaseVarTbl =
AfanModNum.NodeRelatedTbl
write BaseVar.BaseVarTbl ,
BaseAfanModNum.BaseVarTbl
end while
end while
end while
end while
end.

procedure ControlProc()
BaseVar.BaseVarTbhl =
VarName. RefRelatedDetail
BaseAfanModNum.BaseVarTbl =
AfanModNum.NodeRelatedTbl
write BaseVar.BaseVarThl ,
BaseAfanModNum.BaseVarTbl
end.

3.4 Dynamic System Dependence Graph
Generation Step

The dynamic system dependence graph gener—
ation step is a step that generates dynamic system
dependence graph based on the result of the
marking table that is generated by the application
of dynamic system slice marking algorithm.

A dynamic system dependence graph is com-
posed of vertices and edges. A node in solid re-
presents the initial vertex. A node in bold re-
presents the vertex sliced. An initial edge is
represented by a dashed edge. There are three
types of edges that connect to a sliced node. An
intra dependence edge is shown by a solid line,
inter dependence edge is shown by a bold line, and
the return dependence edge is shown by a bold

dash.

3.6 Sliced Program Generation Step

The sliced program generation step is a step that
produces final sliced program after program for-
malizing based on dynamic system dependence
graph. The sliced program is another program
whose behavior is identical, for the same program
input, to that of the original program with respect

to a variable of interest.

4. Application of Dynamic System Slicing
Technique

4.1 Application example

We apply the dynamic system slicing algorithm
proposal to an example program in Fig. 2.

1 program Main

2 i=1

3 x=1

4 y=1

5 while i1<=2 do

6 call A(x,y,z,1)

loop

7 print z

8 end

9 procedure Afab,c,d)
10 input k

11 a=k**2

12 call IFF(a,b,c)
13 call Increment(d)
14 end

15 procedure IFF(p,qr)
16 if p<O then

17 a=fl(p)

18 r=f2(q)
else

19 q=13(p)

20 r=f4(q)
end if

21 end

22 procedure Increment(e)
23 e=e+l

24 end J

Fig. 2. Example Program

Dynamic Slicing using Dynamic System Dependence Graph 337

(1) System Node Analysis Step
The analysis data table of nodes that consist of
the sample program from Fig. 2 is noted in Table 1.

(2) System Execution History Analysis Step

The execution history of example program thus
far is (1, 2!, 3, 4}, 5, 6, 9, 10, 11, 12', 15", 16},
19%, 20", 214, 13", 14!, 22!, 23", 24", &% 6% &, 10% 11%,
12, 15%, 16°, 197, 20%, 217 13% 14%, 22°, 23%, 24% 5°,
7'} where a = {-2, 3). The execution history table
and the path table related module to compute the
dynamic slices when a system slicing criterion is
Z of execution order are illustrated in Table 2 and
Table 3.

Table 1. The data of related nodes for the Example

Table 2. Execution history table

N.EN Node number AME.O
1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 6 1
7 9 7
8 10 7
9 11 7

10 12 7
11 15 11
12 16 11
13 19 11
14 20 11
15 21 11
16 13 7
17 14 7
18 22 18
19 23 18
20 24 18
21 5 1
22 6 1
23 9 23
24 10 23
25 11 23
26 12 23
27 15 27
28 16 27
29 19 27
30 20 27
31 21 27
32 13 23
33 14 23
34 22 34
35 23 34
36 24 34
37 7 1
38 7 1

Program
nfr‘;iir Node type DEF | REF |AMN
1 procedure name Main 1
2 assign 1 1
3 assign X 1
4 assign \% 1
5 repeat i 1
6 call A X,V,2,1 1
7 print Z 1
8 return 1
9 procedure name abecd| 9
10 input k 9
11 assign a k 9
12 call IFF a,b,c 9
13 call Increment d 9
14 return 9
15 | procedure name IFF .| par 14
16 selection s) 14
17 assign q p 14
18 assign r Qq 14
19 assign q p 14
20 assign r q 14
21 return 14
22 procedure name | Increment e 21
23 assign e e 21
24 return 21

(3) Dynamic System Slicing Algorithm Application
Step
The marking table that is made after the ap-
plication of the system node analysis table, the
execution history table and the path table related
module which were made during steps (1) and (2)
to the dynamic system slicing algorithm is noted
in Table 4. The nodes that contain v in the marking
table are execution history nodes related to slicing

criterion.

338 JENICIOSS =2 M5 K3%(2002. 6)

Table 3. Path table related module

Path order | Path order | Path order
AM. |AM. (1) (2) (3)

EO | N V.A. V.P. VN V.A.
' M.N " |MN " |MN

<
z
<
z

9

9

9

9

15

11 15 15

15
22
9

=N
— = [

18 22

9

23
Y 9

9

15
15
15
22

27 15

@a (= |\Q T ooy o= e v |lalo|ow
QO 1T =N < (Xl]o [T =N
Wiw|o|lo|—|—|~|—|o|w|wv|w|~ ||~

N [[
===

34 22

(4) Dynamic System Dependence Graph Gen-
eration Step

The dynamic system dependence graph for

generation of slice nodes that is made based upon

the making node containing "v" at marking table

is illustrated in Fig. 3.

(5) Sliced Program Generation Step

The sliced program generation step is a step
which procedures the sliced programs based on the
dynamic system dependence graph of Figure 3. It
produces the final programs after formalizing the
programs. The slices {1, 2, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 19, 20, 21, 22, 23, 24} can be
constructed by traversing the dynamic system
dependence graph when slicing criterion is Z of
execution history order 30,namely, node number
7. The final slice nodes are {1, 2, 5, 6, 7, 8, 9, 10,
11,12, 13, 14, 15, 19, 20, 21, 22, 23, 24} because node
number 16 can be omitted during formalizing step.

4.2 Comparison with the graphs

The complexities ¢ of the traditional system
dependence graph(SDG) techniques and the dy-—
namic system dependence graph{DSDG) technique
proposed in this paper are represented below when
the number of system nodes is equal to d, the
number of call nodes equal to ¢, the number of call

Fig. 3. DSDG of Example Program

Dynamic Slicing using Dynamic System Dependence Graph 339

Table 4. Marking table for sliced nodes

{d}+{ctct+[@d-22+D}

parameters equal to p, the name parameter variable
equals to n, the number of vertices equal to o and
the number of edges equal to 7.

« ¢(SDG)
{(Z o (SDO)Y+{Z 7 (SDG)}
{Hd+2p+m D +{[(d+4p+2n+01}
[(2d+6p+4n+c)]
- ¢ (DSDG)

= {Z o (DSDG)} X (DSDG)}

1l

NE.O Node number Marking = [(3d+2c - 3)]
1 1 v
2 2 4
3 3 The complexities ¢ of example program in Fig.
4 4 2 are compared as shown below.
5 5 v
6 6 v
7 9 v Program order d [D n
8 10 1 8 1 4 0
9 11 v 2 6 2 4 4
10 12 v 3 7 0 0 3
11 15 v
12 15 J 4 3 0 0 1
13 19 v . $(SDG) = [(48+48+32+3)] =131
1451 g(l) 5 (We calculate ¢ (SDG) =128 in Fig. 2)
16 13 V] « $(DSDG)=[(72+6-3)1 =75
17 14 v (We calculate ¢ (DSDG) = 53 in Fig. 2)
18 22 v
19 23 .
2 o :; Using our new proposal, we have found it to
21 5 Vv decrease the complexities up to 59 percent as
22 6 v compared to the traditional dynamic system de-
gi lg j pendence graph technique. The slice results number
o5 11 V using the traditional technique was 24, but the slice
26 12 N results number using our technique was only 19.
;; 12 v It shows that our technique is efficient compared
29 19 j with the traditional technique because the complex—
30 20 Vi ities of the dynamic system dependence graph
31 21 technique and the size of the sliced results have
32 13 decreased.
33 14
34 22
35 23 5. Conclusion
36 24
37 5
] 7 The traditional slicing techniques execute a

slicing through a program dependence graph or
a system dependence graph. But, when a system
dependence graph is drawn up, the complexities
of the graph has increased because of addition of
vertices as much as the number of parameters. The
more the number of procedures and parameters, the
more complex of the graph. In our approach, we
have developed a dynamic system dependence
technique to decrease the complexities of the
graph. We have also illustrated our example with
the C program environment to demonstrate that the

340 ZEDITINSE =2Al M52 M3=(2002. 6)

dynamic system dependence we proposed has the
small slice size compared to a traditional system
dependence. After we apply the dynamic system
slicing algorithm to an example program in Figure
2 where a = {-2, 3}, we draw up the dynamic
system dependence graph to compare to the
system dependence graph. As the result, the
complexities of the graph decrease 59 percent if we
use the dynamic system dependence graph pro-
posed in this paper. And the size of slice also
decreases about 20 percent. In conclusion, we found
that this DSDG approach has been more efficient
compared with SDG.

References

[1] Mark Weiser, “Programmers use slices when
debugging”, Communications of the ACM,
July 1982, pp.446-452.

[2] Mark Weiser. “Program slicing”, IEEE Trans.
on Software Engineering, July 1984, pp. 352-
357.

[31 Reps, T. and Turnidge, T., “Program special-
ization via program slicing.”, In Proceedings
of the Dagstuhl Seminar on Partia] Eval-
uation, 1996, pp. 409-429. ‘

[4] Gupta R., Harrold M. and Soffa M., “An ap-
proach toDegression Testion Using- Slicing.”,
Conf. software Maintenance, 1992, pp. 299-308.

[5] Korel B. and S. Yalamanchili, “Forward Der-
ivation of Dynamic Slices.”, Proc. Int’l Symp.
Software Testing and Analysis, Seattle, 1994,
pp.66-79.

[6] Kamkar, M., “Interprocedural Dynamic Slicing
with Applications to Debugging and Testing.”,
PhD thesis, Linkoping Univ., 1993.

[7]1 Park, S. H. and Park, M. G., “An efficient
dynamic program slicing algorithm and its
Application.”, Proc. of the IASTED Interna-

tional Conference, Pittsburgh, Pennsylvania,
May 1998, pp.459-465.

[81 Jeanne Ferrante, Karl J. Ottentein, and Joe D.
Warren. “The program dependence graph and
its uses in optimization.”, ACM Trans. on
Programming Languages and Systems, July
1987, pp.319-349.

[9] Karl J. Ottentein and Linda M. Ottentein. “The
program dependence graph in a software
development environment.”, Proc. of the ACM
SIG SOFT/SIGPLAN Symposium on Practical
Software Development Environments, Pitta—
burgh, Pennsylvania, April 1984.

{10} Susan Horwitz, Jan Prins, and Thomas Reps,
“Integrating noninterfering versions of pro-
grams”, ACM Trans. on Programming Lan-
guages and Systems, July 1989, pp.345-387.

[11] Susan Horwitz, “Identifying the semantic and
textual differences between two versions of
a program”, Proc. of the ACM SIGPLAN’90
Conference on Progrémrning Language Design
and Implementation, 1990, pp.234-245.

[12] Das, M. “Partial evaluation using dependence
graphs.”, Ph.D. dissertation and Tech. Rep.
TR-1362, Computer Sciences Department, Uni-
versity of Wisconsin, Madison, W], February
1998.

[13] Melski, D. and Reps, T., “Interprocedural path
profiling”, In Proc. of CC '99: 8th Int. Conf.
on Compiler Construction, (Amsterdam, The
Netherlands, Mar. 22-26, 1999), Lecture Notes
in Computer Science, Vol. 1575, S. Jaehnichen
(ed.), Springer-Verlag, New York, NY, 1999,
pp.47-62.

[14] B. Korel, “Computation of Dynamic Program
Slices for Unstructured Programs”, IEEE
Trans. On Software Engineering, vol. 23, No.
1, January 1997, pp.17-34.

Dynamic Slicing using Dynamic System Dependence Graph 341

T

19819 E4ietm FHdst H
AHA Ak e} 2} (8FA})
19859 FAthstm thstel A4
ARSI AL
19973 ~ & A} 7B Sk o) &9
AApA ez wpabag
8
19813 ~1983d uir| 224 (F) A 25
19874 ~2000'd T 5 Qeh s} WAA LN mp
Lok 2ZEHTS Y AT LT EH] B~
8, HAUL Z2H 2 3o, PRALE
4 2 A4, mFre zraw 7Y, Uy
vlto] ARAAH A E

-
2t ook 2

19721 ~1987d A > g4}
/AAYERAL AR A E
(o] &ukAp)

1993 Univ. of Kansas A 7]#
FE1F8 (Post-Doc.)

& | 19d-1978d £F % §7F

A8ka FAw 59/d9
19783 ~1980d W #+23 AMEHAME [N EF
19799 ~1981d A FJAF A AR A LGSR s
19873 ~1990 B-Aujgn (F.2A e sta) AR}
A 2bAZ/A A 9 st 8F ok
1988 ~1997d R Ao & distg/Arg s /as o
Sl AAALNEHRT 2 AF3FE
1979'd ~ 20013 = A 717 Colombo Plan Staff College,
AR7E 2 FRFASHF () F4H /7357
E59A)
19979 ~#7) ADB/UN ESCAP/LO APSDEP/KOICA/
JICA SAAH 7| &2 w5
19813~ 84 FAdegw FANE AANFAFHARE
AFEgR @
19953 University of South Australia Qx4 (£F)
19923 ~ 19933 University of Kansas @& x4 (v}=)
19903 ~1991'A University of Liverpool 28 9 (9 =)
BABol: AZE] dxold, AT EY o] A
T AZE o] FAFE, AZE o] AA
£ 9 2AF3, e rY P B 7 &, 2E
ult]o] JEA| 28, HE|w|t]o] AelxA]
HEjuo] I 2o g, HErjte] A
Edo] 33, A $8-8 3 EE Y
7l&, 53 FEE A% JEAYo &8
E-mail : mpark@pknu.ac.kr

