Journal of Korea Multimedia Society (한국멀티미디어학회논문지)
- Volume 5 Issue 3
- /
- Pages.281-289
- /
- 2002
- /
- 1229-7771(pISSN)
- /
- 2384-0102(eISSN)
A Study on Association-Rules for Recurrent Items Mining of Multimedia Data
멀티미디어 데이타의 재발생 항목 마이닝을 위한 연관규칙 연구
Abstract
Few studies have been systematically pursued on a multimedia data mining in despite of the over-whelming amounts of multimedia data by the development of computer capacity, storage technology and Internet. Based on the preliminary image processing and content-based image retrieval technology, this paper presents the methods for discovering association rules from recurrent items with spatial relationships in huge data repositories. Furthermore, multimedia mining algorithm is proposed to find implicit association rules among objects of which content-based descriptors such as color, texture, shape and etc. are recurrent and of which descriptors have spatial relationships. The algorithm with recurrent items in images shows high efficiency to find set of frequent items as compared to the Apriori algorithm. The multimedia association-rules algorithm is specially effective when the collection of images is homogeneous and it can be applied to many multimedia-related application fields.
컴퓨터 처리기술과 저장기술 그리고 인터넷 등의 영향으로 멀티미디어 데이터의 양은 급속하게 증가하지만 체계적으로 멀티미디어 데이터간의 연관규칙을 마이닝하는 연구는 초기 단계이다. 본 논문은 이미지 프로세싱 분야 및 내용기반 이미지 검색에 대한 기존 연구를 바탕으로 대형 영상 데이터 저장소에 저장된 이미지 데이터에서 재발생하는 항목간의 연관규칙을 찾으며 공간적 관계로 내용기반의 연관규칙을 마이닝하는 알고리즘을 제안한다. 제안된 연관규칙 탐색 알고리즘은 이미지의 색상, 질감, 모양 등 내용기반의 영상속성을 오브젝트 항목으로 하여 오브젝트가 이미지에서 재발생될 때를 이용, 이미지간의 연관규칙을 찾고 오브젝트들이 이미지에서 차지하고 있는 공간적 위치관계를 통해 드러나지 않는 이미지간의 연관규칙을 마이닝한다. 본 논문의 재발생 항목을 고려한 연관규칙 알고리즘은 Apriori 알고리즘보다 빈번한 항목 집합을 찾아내는데 더 높은 성능을 보인다는 것을 실험 을 통하여 제시한다. 제 안된 알고리즘은 동일한 정보원으로부터 받은 멀티미디어 데이터간의 연관성을 탐색하는데 특히 효과적이며 다양한 관련 응용분야에 적용할 수 있다.