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DIVISORS OF THE PRODUCTS
OF CONSECUTIVE INTEGERS

YoUNGMEE KOH AND SANGWOOK REEx*

ABSTRACT. In this paper, we look at a simple function L assign-
ing to an integer n the smallest positive integer m such that any
product of m consecutive numbers is divisible by n. Investigated
are the interesting properties of the function. The function L(n) is
completely determined by L(p* ), where p® is a factor of n, and sat-
isfies L(m-n) < L{m)+ L(n), where the equality holds for infinitely
many cases.

1. Introduction

A simple, but interesting function is proposed by P. D. Tiu [1, p. 141].
The function L is defined to assign the smallest number m to a given
number n such that all of the products of m consecutive integers are
divisible by n.

The value of the function turns out to be evaluated based on the prime
factorization of the given number. We use some of simple properties of
binomial coefficients to simplify the definition of the function, and then
we find the properties satisfied by the function. It is not only interesting
but also heuristic to find such interesting properties.

We first show that L(n) is completely determined by L(p*), where
p* is a factor of n. One of the properties of the function L is that it is
analogous to the logarithmic function with the equality replaced by the
inequality: L(m -n) < L(m) + L(n) for positive integers m and n and
L(n*) < kL(n) for k > 1. We also get to know that the equality holds
very occasionally: L(p*) = kL(p) = kp for a prime pand k = 1,2,...,p,
and L(p*) < kL(p) otherwise. We explicitly compute L(22") in terms of
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L(2"), showing that L(n?) = 2L(n) holds for infinitely many n’s. Also,
the preimages of the function L are computed.

2. Divisors of the products of consecutive integers

An interesting function L : N — N is proposed by Tiu [1, p. 141].

DEFINITION. A function L : N — N is defined by assigning to an
integer n the smallest positive integer m such that any product of m
consecutive numbers is divisible by n. That is,

) L(n)=m
—min{k : n|(N+1)(N+2)--- (N +k) forall N € Z}.

For example, it is easy to see that
L(1)=1, L(2) =2, L(3) =3, L(4) =4, L(5) =5, L(6) =3,
L(7)=17, L(8) =6, L(9) =6, L(10) =5, L(11) =11, L(12) =4.

Notice that it seems that L(n) < n. This can be seen by the follow-
ing lemma that provides an easier and clearer, but simpler equivalent
definition of the function L. '

LEMMA 1. For any n € N, L(n) = m if and only if n|m! and

nf(m — 1)L

Proor. We first prove the sufficiency. Since n f(m — 1), it holds
that L(n) > m. That n|m! implies that n also divides any products of
m consecutive integers. In fact, for N > 1,

(N +m)! N+m
so that m!|(N + 1)(N +2)--- (N + m). So L(n) < m. Therefore,
L(n) =m.

The necessity is clear from the definition of the function L. In fact,
L(n) = m implies that n|m! and nf(m — 1)L. If n|(m — 1)!, then,
by (2), n also divides any product of (m — 1) consecutive integers, i.e.,
L(n) < m. d

Note that we have considered the products of consecutive positive
integers only in the above proof. Even when m consecutive integers
contains O or consists of negative integers only, the divisibility by n of
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their products and so L(n) are not changed. By virtue of the above
lemma, the definition of L can be restated as follows.

DEFINITION. L(n) =m if n|m! and nf(m — 1)L

Notice that since L(n!) = n holds, the function L can be seen as the
left inverse function of the factorial operation F' : N — N which assigns
nlton: Lo F =id.

The new definition is so simple that L(n) can be easily found by
definition when n is a prime or a product of distinct primes.

LEMMA 2. For primes p < g, it holds that L(pg) = L(q) = q.
More generally, for k > 1, if py < ps < --- < pi are primes, then

L(p1pa - - - px) = L(px) = pr.

ProoF. First of all, it is clear that if p is a prime, then L(p) = p.
For, p|p! but pf(p — 1)! if p is a prime.

The proof for the general case is exactly the same as that for the case
of pg. It would be enough to see that L(pq) = q for primes p < q. Since
p < q,pdividesq! =1-2---p---q. Sopq|q!. However, q does not divide
(g — 1)!, and neither does pg. So by definition, L(pq) = q¢ = L(q). a

THEOREM 3. For an integer n = Hle p;* withp, p2, - - -, pi distinct
primes,
k
L) =L( ") = L)},
) =2(I157) = e, (20650

ProoF. We will prove for the case when & = 2, i.e., we will show that
for distinct primes p, ¢, L(p"q®) = max{L(p"), L(¢°)}. Let L(p") = a
and L(¢®) = b for some positive integers a and b. Assume a < b. Then
q° |0l and ¢° f(b—1)!. Since a!|b! and p" | a!, we have p" | bl. Since p” and
g°® are relatively primes, p"q® |b! and p"¢® f(b— 1), i.e,, L(p"¢®) =b. O

COROLLARY 4. Let m and n be relatively prime integers. Then
L(m-n) = max {L(m), L(n)}. Generally, if n1,ny,...,ni are relatively
prime integers, then L(l_[f:1 n;) = max {L(n;) : 1 <i <k}

PRrROOF. Since they are relatively primes, m and n are written m =

Hf=1 p; and n = ;:1 qjﬁj, where p1, ..., Pk, q1, ..., q are all distinct
primes.



544 Youngmee Koh and Sangwook Ree

By Theorem 3, we obtain

L(m-n) =L(Iklp? : Il-[q?)
i=1 j=1

= qax L), L(g;")} = max{L(m), L(n)}. [

3. Properties on L(p*)

From Theorem 3, it is enough to find L(p*) for each prime p and for
all k, in order to know L(n) for an integer n. So we now consider n of
the form p* for a prime p and k > 2. For example, let n = 3% Then
what will L(3%) be? We should find the smallest integer m such that
3*|m!. The prime factorization of m! is a product of some powers of all
the primes less than or equal to m. That is, m! = 2™ . 3™ . 5" ~~p;’
for some r; > 1, i =1,2,...,l, where 2 <3 <5 < ... < p; are all the
primes less than or equal to m. Notice that r» should be at least 4 so
that 3* | m!. Looking closely at

m! = (1-2-3-4-5-6-7-8-9) (10---m)
= (27-3*.5.7) (10---m),
we easily see that the smallest m! whose prime factorization contains 3*
is 9. So L(3%) = 9. However, when k is large, it is difficult to find the

smallest m! such that p* is a factor of m!. So we look at some properties
satisfied by L(p*).

LEMMA 5. Let p be a prime. Then p|L(p*) for all k > 1. And,
for m € N a multiple of p, there exists a positive integer n such that
L(p™) = m.

PROOF. If L(p*) = [ then p*|I! and p* f(I — 1)!, so p| L.
Since m is a multiple of p, it is written m! = p’ N for some j=land N
with p/N. Then from p|m and p/ |m!, p? f(m — 1)I. So L(p’) =m. O

Note that the existence of n in Lemma 5 such that L(p™) = m for
given m, a multiple of a prime p, is not unique. For example, L(5%) =
L(5%) = 25.

LEMMA 6. For a prime p, L(p*) < kp for all k > 1. Equality holds
only fork=1,2,...,p.



Divisors of the products of consecutive integers 545

PrROOF. For 1 <k <p—1,(kp)l =1---p---(2p)--- (kp) = p*N
where p f N. So p* | (kp)! and p* f(kp — 1)!, and hence L(p*) = kp.

For k = p, consider p*! = 1---p---(2p)--- (p — 1)p---p? = pP*IM
with p /M. So p?|p?! and p? [ (p? — 1)!. Therefore, L(p?) = p?

For the case k > p, we use mathematical induction on k = p+4,¢ > 1.
When k = p+1, the fact p?! = pP*' M with p /M implies L(pp+1) =
p? < (p+1)p. Suppose L(pP*%) < (p+ i)p for i > 1. Then, since the
product of p consecutive integers right after L(pP*?) is a multiple of p,

L") <p+ L) < (p+i+ 1)p.
Therefore, for k& > p, L(p*) < kp. O

Remark that the above lemma implies L(p*) = O(k).
The following theorem is a generalization of Corollary 4.

THEOREM 7. For any positive integers m, n, L(m-n) < L(m)+ L(n).
In particular, L(n*) < kL(n) for any k > 1.

PROOF. Let L(m) = a and L(n) = b. Then m|a! and n|b!. Since b!
divides a product of b consecutive integers, m-n|1-2---a-(a+1)--- (a+
b). So L(m -n) < a+b. O

COROLLARY 8. Let n = Hé:l pf", for p; distinct primes and some
k; > 1. Then

L(n) = mas, (L)) < max (kiL(p)} = max {kipi}

To get an idea to find L(p*) for all k > 1, we try L(2¥) for k > 1. We
first find some of L(2F)’s:

L(2Y)y=2, L(25 =8, L(2°) =12 L(2") =16,
L(2%) =4, L(25) =8, L2 =12, L(24) = 16,
L(2%) =4, L(27) =8, L(2")=14, L(2%) =16,
L(2%) =6, L(28) =10, L(2'%) =16, L(2'%)=18.

By Theorem 7, if L(2") = m, then L(22") < 2m for all n > 1.
From L(2') = 2, L(22) 4 and L(24) 6, we see that the inequality is
sometimes equal and sometimes strict. We investigate when the equality
holds.
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LEMMA 9. Given an even integer m,
[{n : L(2") =m}| =max{l : 2'|m}.

PROOF. Write m! = 2"P and (m — 1)! = 2°Q), where 2 /P and 2/Q.
Since m is even, r > s. Let k =7 —s > 1. Then k = max{l : 2'|m}.
We have 2°%¢ f(m—1)! and 2°7% | m!, and so L(2°"%) = m when and only
wheni=1,2,...,k. O

LEMMA 10. Let L(2¥) = m and m = 2 (mod 4). Then L(2%¥72) =
L(2F-1) = m — 2 and L(2*+1) = L(2F*2) = m + 2.

PrOOF. Write m! = 2"P and (m — 1)! = 25Q with 2/P and 2/Q.
Since m = 2 (mod 4), r = s + 1. By Lemma 9, k is the unique integer
such that L(2%) = m. So L(2*¥~!) = m — 2 and L(2¥*!) = m + 2. Since
4|(m +2), we have 2572 |(m — 2)! and 25=2 f (m — 3)! and 25+2|(m + 2)!
and 28%2 f(m + 1)!. Hence, L(2*"2) =m —2 and L(2¥*?>) =m+2. O

LEMMA 11. For allm > 1, (27;”) is even. In particular, for alln > 1,
(2;”) = 2 (mod4).
2m

PROOF. First of all, it is clear that (") is even:

o @m)em — 1, (2m - for m > 1.
<2m) (2m)(2m — 1)! (mm 1)

m m(m — 1)m!
For the second part, write

2n+1 2n 2n+7; 2n_+_i 2n_ri+P,;
(p)-I5-(O 5= 1 55F2):

i=1 i=odd i=even<2n

. .. . . n+1
where for i < 2" even, i is while the last component is 2 = 2.
No even integer appears in both of the numerator and denominator

of the product in the parenthesis. So (2;: 1) = 2 (mod 4). O

THEOREM 12. There are infinitely many n’s such that L(2%") =
2L(2") holds.

To see this, we first investigate, case by case, how L(2") inductively
determines L(2%"). Suppose L(2") = m is given. We look at L(2"+1)
and L(22"*2). From Lemma 11, it can be written (2m)! = 2¥(m!)2P for
some k£ > 1 and an odd integer P.

When L(2") = m, L(2"*1) is either m or m+2 depending on whether
m = 0 or 2 (mod 4). So we have two cases. And when L(2"t1) = m



Divisors of the products of consecutive integers 547

holds, we further divide the case into three cases according to what
L(27+2) is.

CASE 1. Let L(2") = m and m = 2 (mod 4). Then we have L(2"+1) =
L(27+2) = m + 2. Since 2"*?|(m + 2)! and 2" divides a product of m
consecutive integers, L(22"+2) < 2m +2 < 2(m+2) = 2L(2"*1). So the
inequality is strict in this case.

To be precise, write m! = 2" N for some N with 2/N. Then (2m)! =
28(m!)2P = 22+5Q, where 2P and 2/Q. So L(2?"*2) = 2m + 2 if
k=1, L(22"*?) = 2m if k = 2, and L(2?"*2) < 2m if k > 3.

CASE 2. Let m = 0 (mod 4), L(2") = m and L(2""!) = m + 2.
Then 2" |m! and 2"+ fm!. From (2m)! = 22"*t£Q for some odd Q and
2m + 2 = 2 (mod 4), we have L(22+1+F) = 2m + 2.

So L(227*2) < L(22"F1k) = 2m + 2 < 2(m + 2) = 2L(2""1). In this
case the inequality is strict.

CASE 3. Let m = 0 (mod 4), L(2") = L(2""!) = m and L(2""?) =
m+ 2. Then m! = 2"*1N for some odd N and (2m)! = 22"+2+F ) for
some odd M. So L(22"2) < L(227+2+F) = 2m = 2L(2"H1).

Since 8|2m, (2m — 2)! has at most 22"**~1 as the power of 2 in
its prime factorization. So if ¥ = 1 or 2, then 222 f(2m — 2)! and
22742 ¥ (2m—1)!. Therefore, L(22"*2) = 2m if k = 1 or 2 and L(2?"+2) <
2m — 2 if k > 3. In other words, when k£ = 1 or 2, the equality holds.
Otherwise, the inequality is strict.

CASE 4. Let m = 0 (mod 4) and L(2") = L(2"*!) = L(2"*?) = m.
Since 2712 |m!, 227T4+E | (2m)l. So L(2%"*2) < L(2%"+4HF) < 2m =
2L(2"Y).

Write m! = 2"*'N for some | > 2 and odd N. Then (2m)! =
22n+2A+E AL for some odd M. Since |{i : L(2") = m}| > 3, m is
written m = 2/P for some j > 3 and odd P. From 2m = 2/t1P,
(2m — 2)! = 227 +2-5-1+kQ for some odd Q. So 227*2 | (2m — 2)! if and
onlyif 2n+2 < 2n+2l—-j—1+4+k, ie, 20+ k —j > 3. Therefore,
L(2%12) = 2m = 2L(2"*!) occurs when and only when 20+ k —j =1
or 2. A strict inequality holds otherwise.

PROOF OF THEOREM 12. For all m of the form m = 2! with | > 2,

2 . . :
(?™) = 2Q for some odd Q by Lemma 11. Since |[{j|L(2/) =m}| =1> 2,
we choose n so that L(2") = m and L(2"*!) = m + 2. For such m and
n, we have Case 3 with k = 1. So, for each [ > 2, there exists at least
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one n which satisfies L(22") = 2L(2"). Hence, we have infinitely many
n’s such that L(2%") = 2L(2"). O

REMARK. From Theorem 12, we know that there are infinitely many
m and n such that the equality holds in L(m - n) < L(m) + L(n).

4. Preimages under L
Now we consider the preimages of m under L.

DEFINITION. P(m) = {n : L(n) =m}
={n:n|m!, and nf(m —1)!}.

To find P(m), we first suppose that m be a prime. For m = 2,
P(2) = {2} by definition. Now let m > 2. The prime factorization of
m! is given as
(3) m!=2m3"...p*'ptk-m for somer; > 1,i=1,2,...,k,
where 2 < 3 < --- < pg_1 < pi are all the primes less than m.

An integer n dividing m! is of the form
n=2°13%2...pkm+1 0<s; <7 fori=1,2,...,k, sgy1=0o0r 1.

If sg+1 = 0, then n|(m — 1)I. So L(n) < m, i.e., n ¢ P(m). Hence an
integer n in the set P(m), for a prime m, should be of the form

n=2%3%...p*m, 0<s;<m fori=1,2,...,k.

Such integer n divides m! but not (m — 1)!.
We summarize the above argument as the following theorem:

THEOREM 13. For a prime m > 2 with the factorization of m! given
by (3),
P(m)={2%132...pt* .m : 0<s; <ryfori=1,2,...,k}.
In fact, the set P(m) is the set of all divisors of m! which have m as a
factor, and the number of elements in the set is
k

[P(m)| = [T(1 + 7).

i=1
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Now we consider the set P(m) for composite number m. Let m = pq
for primes p < q. Then the prime factorization is given by

(4) ml=2M3"2...p".. -p;j ---p ¥ for some r; > 1,
where 2 < 3 < --- < py, are all the primes less than m and p; = p, p; = q.
Any n dividing m! should be of the form
n=281332---pfi--~p;j---p2’°, 0<s;<r; fori=1,2,...k.
If both s; < r; and s; < r; hold, then n divides
(m— 1)t =2mgrz...piit . .p;j—l - pRE
This means L(n) < m, i.e.,, n € P(m). So we conclude that at least one
of s; = r; and s; = r; should be satisfied.
TI'-IEOREM 14. For an integer m = pq, with primes p < q, let m! is
factorized as in (4), where p = p; and q = p;, then
P(pq) = {231332---p;"---p;j---pi’“ :0< s <my forl;éi}
U {2313s2~~pfi--~p;j---pZ’“ : 0< sy <rforl#j}

and

1Pp)l = [+ D)+ [J(n+1) = J] (n +1).

I#i l#j I#4,5

EXAMPLE. Consider the set P(14). By the definition of P(m),
P(14) ={n : n|14}, nf13!}.
Since 14! = 211355272 .11 . 13, any integer n dividing 14! is of the form
n = 2°13%25%37%411%513%, 0<s;<r; fori=1,2,...,6,

where ry =11, r, =5, r3=r, =2 and r5 = rg = 1.
If s < 11 and 34 < 2, then n|13!. For 14 contributes one to each
of the powers of 2 and 7 in the prime factorization of 14!. In fact,

L(2") = L(7?) = 14 and L(p') < 14 for p; = 3,5,11,13, 0 < s; < ;.
So
P(14) = {2M3%25%7%411%13% : 0<s; <1, 1 =2,3,4,5,6}
U {2°13°25%37211%13% : 0 < s; <7, =1,2,3,5,6}.
Note that P(14) is the set of all divisors of 14! containing 2!! or 72 as
their factor. So by inclusion-exclusion principle,
[P(14)] = 6-3-3.2.2412:6-3-2.-2—-6-3-2.2
1008.
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The largest and smallest elements in P(14) are 14! and 7.

THEOREM 15. For an integer m = le p;t with m! = H;zl q;j,
wherep;, i =1,2, ..., k,andgq;, j =1, 2, ..., [, are primes,

l
P(m):{quj :0<s;<rjforj=1,2,...,1,
j=1

and sy = ry for at least one J with gq; = p; for some % }

Remark that the size of the set P(m) is calculated by the inclusion-
exclusion principle.
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