DOI QR코드

DOI QR Code

HöLDER ESTIMATES FOR ∂ IN ANALYTIC POLYHEDRA

  • Cho, Hong-Rae (Department of Mathematics Education Andong National University)
  • Published : 2002.07.01

Abstract

We consider Holder estimates for ∂ in analytic polyhedra. In the case of dimension 2, it preserves exact Ho1der regularity, and it maps bounded (0,1)-forms into BMO with respect to volume measure.

Keywords

References

  1. Pacific J. Math. v.189 no.2 L[sup p]and H[sup p] extensions of holomorphic functions from subvarieties of analytic polyhedra K. Adachi;M. Andersson;H. R. Cho https://doi.org/10.2140/pjm.1999.189.201
  2. Proc. of Mittag-Leffler 87/88 Math. v.38 Lр estimates for the đ equation in analytic polyhedra in Stein manifolds M. Andersson
  3. Ann. Inst. Fourier v.32 Henkin-Ramirez formulas with weight factors B. Berndtsson;M. Andersson
  4. Ark. Mat. v.35 no.2 The H[sup p] Corona theorem in analytic polyhedra J. Boo https://doi.org/10.1007/BF02559968
  5. Mat. Sb. v.40 Uniform estimates for solutions of the đ- dquation in pseudoconvex polyhedra G. M. Henkin;A. G. Sergeev
  6. Math. Z. v.225 Estimations pour la resolution du đ sur une intersection d'ouverts strictment pseudoconvexes C. Menini https://doi.org/10.1007/PL00004305
  7. J. Geom. Anal. v.2 no.6 On Holder and BMO estimates for đ on convex domains in C[sup 2] R. M. Range
  8. Math. Ann. v.206 Uniform estimates for the đ-equation on domains with piecewise smooth strictly pseudoconvex boundaries R. M. Range;Y.-T. Siu https://doi.org/10.1007/BF01355986
  9. Springer-Verlag Function theory in the unit ball in C[sup n] W. Rudin