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THE DOUBLE-COMPLETE PARTITIONS OF INTEGERS

HoKyu LEE AND SEUNGKYUNG PARK

ABSTRACT. Representing a positive integer in terms of a sum of
smaller numbers with certain conditions has been studied since
MacMahon [5] pioneered perfect partitions. The complete parti-
tions is in this category and studied by the second author [6]. In
this paper, we study complete partitions with more specified com-
pleteness, which we call the double-complete partitions.

1. Introduction

Many mathematicians studied the unique representations of positive
integers by some sequences with given properties. For example, Zeck-
endorf found that every integer can be uniquely represented as a sum
of inconsecutive terms of Fibonacci sequences. MacMahon [5] studied
perfect partitions of n which are partitions of n such that every integer
m with 1 < m < n is uniquely represented in one and only one way.
We (3, 4] generalized Zeckendorf theorem and MacMahon’s results on
perfect partitions. In 1960, Hoggatt [2] considered sequences such that
every positive integer can be represented as a sum of some terms of the
sequences and Brown [1] studied such sequences and named complete,
which are defined as sequences (s1, s2,---) such that every integer can
be represented as > oo, a;s;, where ; € S = {0,1}. A partition which
is complete was studied in [6]. This was also generalized [7] by replacing
the set S = {0,1} by the set § ={0,1,...,r}. In this paper, we study
complete partitions with at least two different representations.
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2. The double-complete partitions of integers

We begin with the definition of partitions of positive integers.

DEFINITION 2.1. A partition A = (A1 --- X;) of a positive integer n
is a finite non-decreasing sequence with 2221 A; =nand A; > 0 for all
i. The \; are called the parts of the partition and the number [ is called
the length of the partition.

We also write partitions in the form (AT A3" - -+ A{™) with A\ < Ag <
cee < Ay my 2> 1, and I = my + mo + -+ + my, which means there are

exactly m; parts equal to \; in the partition A. The positive number m;
is called the multiplicity of ;.

DEFINITION 2.2. A double-complete partition of an integer n is a
partition A = (AT --- A™) of n such that each integer m with 2 <
m < n — 2 can be represented at least two different ways as a sum

L o) with oy € {0,1,...,m;}.

EXAMPLE 2.3. A partition (13 22) of 7 is a double-complete partitions
of 7 because each of the numbers 2, 3,4, and 5 can be represented as

2 = 2.140-2=0-1+1-2,
3 = 3.140-2=1-1+1-2,
4 = 2.141-2=0-1+2-2,
5 = 3-1+1-2=1-1+2-2.

Note that the double-complete partitions of any positive integer n
must have 1, 1, and 2 as its parts to be able to represent integer 2 in two
ways. Son > 14142 = 4 and therefore double-complete partitions are
considered for only n > 4. For n > 5, the double-complete partitions
of n have to represent the number 3 at least twice. Thus, it must have
1,1,1and 2, 0r 1, 1, 2 and 3 as parts. If A = (AT A3 -~ ™) is a
double-complete partition then A\; = 1 and Ay = 2.

THEOREM 2.4. A partition A = (A" A\J*2--. A\[™) of a positive in-
teger n > 5 is a double-complete partition if and only if A\;;; < Zj‘:l
mjA; — 1 for ¢ > 2 and A should have at least three 1’s and one 2, or
two 1’s, one 2 and one 3 as parts.

PROOF. (=) Suppose A;11 > > %_; m;A; for some i > 2. Then 22:1
m;A; — 1 can be represented only once, which is a contradiction. If it
does not have 1,1,1 and 2 as parts or 1,1,2 and 3, then the number 3
cannot be represented twice.
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(<) We use induction on . First, we show that the partition (AT" A\J*
AZ3) = (1™ 22 \3") with my > 2, mg > 1, and A3 < my+2my—1lisa
double-complete partition of the integer miA; +mady+m3gAg. It is obvi-
ous that 2 < k < A3—1< ky-14+m2-2—2 can be represented at least twice
using the parts 1 and 2. We can represent integers less than or equal to
my1 -1+ ma- 2 by using the parts 1 and 2. Also, 1-Az3and 1-1+1- )3 are
representations of A3 and A3 + 1, respectively. Therefore Az and Az +1
have two representations. If A3+ 1 < k < myA; +maods +mgA3 — 2 then
there exist ¢ and r such that k = r+¢q- A3 with1 <gand 0<r < A3. If
2 < r < A3 then 7 can be represented at least twice, so k does. If r is 0
orlthen k=gq-A3= A3+ (g—1)-A30r bk =1+4¢-A3=1+A3+(g—1)-As.
Since we have two representations of Az and Az + 1, so k does. Thus
(AT A3 A3") is a double-complete partition.

Suppose (A7 AZ? --- A") be a double-complete partition of n. It is
enough to show that (A" -+ A™ M) with A1 < 305 myh;—1is
a double-complete partition of 7+ m;41- Aj41. Since (/\m1 Ag? . /\Z”)

is a double-complete partition, every integer k with 2 < k < 23':1 mjiAj—
2 is represented at least twice by using the parts A1,..., ;. Let Z; =1 A
—14+(s—1)Aip1 <k<E _1MjAj—2+48Ai4q for some s =1,...,miq1.
Then0<z_1mjz\ —1—>\,+1<k—s/\z+1<2 _1myA — 2.

If k—sAiy1 > 2, k—sA;+1 can be represented at least tw1ce by using the
parts Ag,..., A So k is represented at least twice. If k —sAjyy < 1,
then 37 1miA; — 1 — A is O or 1. So, Aiy1 = D5 mydy — 1
or i1 = Y:_;mjA; — 2. Therefore, k has at least two representa-
tions ; sAjt1, (m1 — l)/\1 + Z;‘:Z mj)\j + (S — 1))\,‘4_1, and A\ + sA;jyq,
(m1 — D)A1 + 2 7%_a myAj + (s — L)As41, respectively. O

.

Using the previous theorem, one can find an upper bound of each
part.

COROLLARY 2.5. Let A = (A1 Ag--- A;) be a double-complete par-
tition of a positive integer n. Then \; < 3-2'"* for each i = 4, ...,
l.

PROOF. We know that \; = Ay = 1 and A3 < 2. By Theorem 2.4,
Ai SA1+Aet A1 =1 <20+ 200+ +2X 2 -2 < - <24+
214, 4 2074 )\g — 2171 < 3. 244, O

We now investigate the length and the largest part of double-complete
partitions. We use [z] and [z | respectively for the least integer greater
than equal to z and the greatest integer less than or equal to z .
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PROPOSITION 2.6. Let A = (A1 A2--+ A;) be a double-complete par-
n —_—

3]'

tition of a positive integer n > 5. Then l > 3 + [log,

PROOF. Let A = (A1 Az -+ A;) be a double-complete partition of a
positive integer n. Since n < 4+Z§:4,\i <443+3.24--- 43274 =
14+3-23 n—1<3-2-3 and it gives the minimum possible length

-1 .
3+ [logy —— 1. In fact, A = (\; Az -~ X)) with A = 3204 (4 =

3
4,...,1) is a double-complete partition with such length. O

PROPOSITION 2.7. The largest part of a double-complete partition of

n is less than or equal to Ln ; 1J forn > 5.

PROOF. Let A =(A1 Ag--- A;) be a double-complete partition of n.
Then by Theorem 2.4, }; is less than or equal to lif Ai—l=n—X\—1.
Thus, 2); < n — 1 and we obtain the result. = O

Now we count double-complete partitions by the largest part greater
than 4. We consider double-complete partitions A = (A Az2--- ;) of a
positive integer n with k as its largest part. Then there are two cases
: one for partitions with one k and the other for the rest of them. If
n<2kthenk=XN>n—-k=n-XMN> Zé;}/\i—l. In this case,
there do not exist double-complete partitions of n. If 2k +1 < n < 3k
and if a double-complete partition A has at least two k’s as parts, then
Ziﬁ Ai—1=n-2k—1< k= X_1. It cannot be a double-complete
partition by Theorem 2.4. So double-complete partitions should have
only one k and it corresponds to the partition (A; Ap--- A —1) of n—1
with the largest part k—1. If n > 3k+ 1, then double-complete partition
A may have many k’s and it corresponds to the partition (A1 Az--- N—1)
of n — k with the largest part k. We summarize this.

THEOREM 2.8. Let Dy(n) be the number of double-complete parti-
tions of a positive integer n with largest part k. Then for k > 3,

0 if n<2k
Dk(n) = Dk_l(n — 1) if 2k4+1<n<3k
Dy_1(n—1)+ Dg(n—k) if n>3k+1.

Now we find the generating function of the numbers Dg(n).
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o0
THEOREM 2.9. Let di(q) = Z Dy (n)q". Then we have

n=0
(@) = I +¢*
2 -@)(-¢
q7
ds(q) 1-@)1-A)1—g)
di(g) = 2+ =g
ot (1-g)(1-¢¥)(1-¢*)(1-9q)
k5 4 gh+T _ gh+8
dilg) = 1

(1-g")(1—g¢1)---(1-¢*)(1—9q)
Dj_1(2k — 1)¢%*  Dj_o(2k — 3)g%*~1
1—gk (1—g*)(1 - g+ 1)
D4(9)qk+5
(1-gF)(1 —gk-1)---(1-¢d)

+

J for k£ > 5.

PROOF. One can easily find the generating function da(q) for the
double-complete partitions since any partition having only 1’s and 2’s
as parts is a double-complete partition for n > 5, and the only double-
complete partition of the number 4 is (1 1 2). Similarly, we can find dy(q)
for k = 3. If k = 4, then the double complete partitions may have 3’s as
their parts or may not. So the double complete partitions have the form
(1™ 22 4™4) with my > 3, ma > 1, and my > 1 or (1™ 2M2 3m3 4ma)
with m; > 2 and m; > 1 for ¢ = 2,3,4. By adding the corresponding
generating functions of each form, we obtain the generating function
d4(q)- Now, we find the generating function di(q) for k > 5. Let di(q) =
Yoo 3 Dk(n)g"™. Then

de(e) = Y Di(n)g"= Y Dip(n)q"
n=0

n=2k+1
3k o0
= D> Dialn—1)¢"+ Y [De1(n—1)+ Di(n— k)] ¢"
n=2k+1 n=3k+1

= Y Dialn—1)¢"+ > Di(n—k)q"

n=2k+1 n=3k+1
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[o 0] x
= q¢ Y Dealn=1)¢""+d° ) Diln—k)g" "
n=2k+1 n=3k+1

= qldr-1(q) — Dr—1(2k — 1)¢** 1] + ¢*di(q).

Thus we have

q Dy_1(2k — 1)¢**
d = _ - .
k() 1_qkdk 1(9) 1= ¢F
By continuing iteration,
q Dy_1(2k — 1)g%*
d = ——di_ -
k() % 1(q) s
Dy_2(2k — 3)g?+—4
_ 4 i qk—ldk_2(q) _ Dy k_)lq
1-¢*[1-¢ l1-gq
_ Dy1(2k — 1)g**
1—gk

q2

= A-ma= gk
Dk_1(2k — 1)q2k Dk_2(2k _ 3)q2k—1
_[ 1= (1_qk)(1_qk_1)}

k—4

= q
a (1-¢5)(1—gk1)---(1— qs)d4(‘I)

Di_1(2k — 1)g®*  Dy_5(2k — 3)g%*!
N { 1—g* (1-¢¥)(1 —¢F 1)
Dy(9)¢*+° ]
(1-g")(A—g* 1) (1-¢°
qk+5 + qk:+7 _ qk+8
(1-¢)Q-¢1)---1-¢)(1-9)
_ [Dk—l(% —1)g* n Dy—»(2k — 3)g** "
1—gF (1-¢")(1-q¢1)

_|_

+ -

Dy(9)g"*® ]
(1-gb) A —gk1)---(1-g5)]

+
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