Abstract
The crystallization of amorphous $\alpha$-Fe$_2$O$_3$/$\alpha$-AI$_2$O$_3$(0001) thin films during thermal annealing in air has been studied using real-time synchrotron x-ray scattering. The well aligned (0.02$^{\circ}$/ FWHM) $\alpha$-Fe$_2$O$_3$and Fe$_3$O$_4$interfacial crystallites (50- -thick) coexist on the $\alpha$-AI$_2$O$_3$(0001) in the sputter-grown amorphous films at room temperature. The amorphous precursor is crystallized to the epitaxial $\alpha$-Fe$_2$O$_3$grains in three steps with annealing temperature; i ) the growth of the well aligned $\alpha$-Fe$_2$O$_3$interfacial crystallites, together with the transformation of the Fe$_3$O$_4$crystallites to the $\alpha$-Fe$_2$O$_3$ crystallites, ii ) the growth of the less aligned (3.08$^{\circ}$ FWHM)$\alpha$-Fe$_2$O$_3$grains on the well aligned grains (>40$0^{\circ}C$), and iii) the nucleation of the other less aligned (1.39$^{\circ}$ FWHM) $\alpha$-Fe$_2$O$_3$grains directly on the $\alpha$-AI$_2$O$_3$substrate (>$600^{\circ}C$). The effective thickness thinner than 230 may be very useful for enhancing the epitaxial quality of $\alpha$-Fe$_2$O$_3$/AI$_2$O$_3$(0001) thin films.