TCM Without Constellation Expansion Penalty

  • Kaminsky, Edit J. (Department of Electrical Engineering, University of New Orleans) ;
  • Ayo, James (University of Tennesee, College of Business Administration, Knoxville)
  • 발행 : 2002.06.01

초록

We present a family of constant-amplitude constellations of even dimensions 8 and above. These constellations allow trellis coded modulation to be implemented without the usual penalty paid for constellation expansion. The new constellations are generated by concatenating either n QPSK points or n QPSK points rotated by 45 degrees, for any n $\geq$ 4. Our constellations double the number of points available for transmission without decreasing the distance between points and without increasing the average or peak energies, introducing asymmetry, or increasing the modulation level. Effective gains of 2.65 dB with minimum complexity through 6.42 dB with moderate complexity are demonstrated using the 8D constellation.

키워드

참고문헌

  1. T. Ericson and V. Zinoviev, 'Spherical codes generated by binary parti-tions of symmetric pointsets,' 1EEE Trans. Inform. Theory, vol. 41, no. 1, pp.107-129,Jan. 1995
  2. J. H. Conway and N. J. Sloane, Sphere packings, lattices and groups, Springer-Verlag, NY, 2nd. edition, 1993
  3. G. Ungerboeck, 'Channel coding with multilevel/phase signals,' IEEE Trans. Inform. Theory, vol. 28, no. 1, pp. 55-66, Jan. 1982 https://doi.org/10.1109/TIT.1982.1056454
  4. G. Ungerboeck, 'Trellis-coded modulation with redundant signal sets, Part I: Introduction,' 1EEE Commun. Mag., vol. 25, no. 2, PP. 5-11, Feb. 1987 https://doi.org/10.1109/MCOM.1987.1093542
  5. L. Wei, 'Trellis-coded modulation with multidimensional constellations,' IEEE Trans. Inform. Theory, vol. IT-33, PP. 483-501, July 1987
  6. D. Saha, 'Channel coding with quadrature-quadrature phase shift-keying ($Q^2$PSK) signals,' IEEE Trans. Commun., vol. 38, PP. 409-417, Apr. 1990 https://doi.org/10.1109/26.52650
  7. R. Padovani and J. Wolf, 'Coded phase/frequency modulation,' IEEE Trans. Commun., vol. COM-34, pp. 446-453, May 1986
  8. E. J. Kaminsky, Trellis coding and adaptive estimation in dually polarized systems, Ph.D. thesis, Tulane University, New Orleans, LA, June 1991
  9. G. Fomey, 'Coset codes, part I: Introduction and geometrical classifica-don,' JEEETrans. Inform. Theory, vol. 43, pp. 1123-1151, Sept. 1988
  10. S. Pietrobon et al., 'Trellis-coded multidimensional phase modulation,' IEEE Trans. Inform. Theory. vol. 36, pp. 63-89, Jan. 1990 https://doi.org/10.1109/18.50375
  11. A. Viterbi, 'Convolution codes and their performance in communication systems,' 1EEE Trans. Inform. Theory, vol. IT-13, PP. 260-269, Apr. 1971
  12. G. Fomey, 'Convolution codes II: Maximum likelihood decoding,' Infor-motion and Control, vol. 25, PP. 222-266, July 1974 https://doi.org/10.1016/S0019-9958(74)90870-5
  13. D. Divsalar, M. Simon, and J. Yuen, 'Trellis coding with asymmetric modulation,' IEEE Trans. Commun., vol. C0M-35, no. 2, pp. 130-141, Feb. 1987