3GPP9] Bl E714] IMT-2000 Al&9e] B T2 X3 T34 ¢z
AA wjolH 7RI A2y dHolE e £AE AFs] 9T
§ CBC-MACS] ##olt). o] =72 99 39 7153 RS AL subo] Hi B2 957} $4} AW £gojd ojw 2R] U3l
A& f97F kAZE S

Provable Security of 3GPP Integrity Algorithm f9

Dowon Hong'- Sang Uk Shin'- Heuisu Ryu'- Kyo-1I Chung'!

ABSTRACT

Within the security architecture of the 3GPP system there is a standardised integrity algorithm 79. The integrity algorithm f9 computes
a MAC to authenticate the data integrity and data origin of signalling data over a radio access link of W-CDMA IMT-2000. 9 is a variant
of the standard CBC MAC based on the block cipher KASUML. In this paper we provide the provable security of f9. We prove that f9 is
secure by giving concrete bound on an adversary's inability to forge in terms of her inability to distinguish the underlying block cipher from
a pseudorandom permutation.

FI9E : HAIX] §1F I=E(MAC), SY7Hs oHM M (Provabile Security), f9, 3GPP

1. Introduction

There is a standardised integrity algorithm 79 within the
security architecture of the 3GPP (3rd Generation Partner-
ship Project) system and this algorithm is a variant of the
standard CBC (Cipher Block Chaining) MAC(Message Auth-
entication Code) based on the block cipher KASUMI [11].
To protect the data integrity and guarantee the data origin
authentication over a radio access link of W-CDMA IMT-
2000, the integrity algorithm f9 was proposed. We call this
authentication scheme as “3GPP MAC”. The purpose of this
work is to investigate the provable security of 3GPP MAC.

The provable security treatment of MAC based on the
block cipher was started by Bellare et al. [1]. They showed
that CBC MAC is secure in the sense of reduction-based
cryptography. But their proof depends on the assumption
that it is only messages of one fixed length that are being
MACed. It is well known that CBC MAC is not secure when

CREAAEAA 7Y HddTd
CHAFAAEANATA ARHBIVNATRY/ AL TL
12002+ 19 299, AAtgg 12002 5E 24

b
> g

i ol o
Ha

Mo
e

message lengths can vary [1]. Petrank and Rackoff [8] were
the first to rigorously address issues of message length
variability. They provided the provable security of EMAC
(Encrypted CBC MAC) which handles messages of variable
unknown lengths. Black and Rogaway [2] introduced three
refinements to EMAC with optimizing efficiency on arbitrary
bit strings. They also showed the provable security of them
by using new techniques which regard EMAC as an instance
of the Carter-Wegman paradigm [3, 10]. Recently, several
new modes, PMAC (Parallelizable MAC) of Rogaway [9] and
XECB-MAC of Gligor and Donescu [4] etc., which are pro-
vably secure, are proposed in Modes of Operation Workshop
of NIST.

3GPP MAC is similar to EMAC, except that the MAC
scheme uses a pair of key K and K’, where K’ is derived
from K, instead of two independent keys K and K’, and
the input of the final block computation is the exclusive or
of the outputs from all block computations instead of CBC
MAC value. These make main difficulties in the proof of
security of 3GPP MAC. In this paper we prove that 3GPP
MAC is secure in the sense of reduction-based crypto-

574 BEX2ISS =2 C M9-CH 4= (2002.8)

graphy. Specifically, we prove that 3GPP MAC is a pseudo-
random function which means that no attacker with poly—
nomially many encryption queries can distinguish between
the 3GPP MAC and the perfect random function. Using this
fact we show that 3GPP MAC is a secure MAC under the
assumption that the underlying block cipher is a pseudoran—
dom permutation. This assumption is reasonable since the
pseudorandomness of the 3GPP block cipher KASUMI was
lately proved by Kang et al. [5,6].

2. Preliminaries

2.1 Notations

A family of functions is a function F: K x A— B where
K is a finite set of strings and A4,B < {0,1}". To pick a
function f at random from a family F means to pick a key K
uniformly at random from K and let 7« F(K, -) ; we write

f & F for this operation. Let R ,_., be the family of all

functions from {0,1}” to {0,1}” and R ,._; be the family of
all functions from ({0, 1}™)* to {0,1}" Similarly, let Perm,

be the all pennutaﬁons on # -bit strings. A block cipher can
be regarded as a family of permutations on a message space
indexed by a secret key. We consider a block cipher as a
function E: K x {0,1}" — {0,1}” where Ex(-) = E(K, +)

is a permutation on{0,1}".

Let F,G be two function families. An adversary A dis-
tinguishing between Fand G has access to an oracle f and,
at the end of its computation, outputs one bit. The oracle f
will be chosen either from F or from G, and the purpose of
the adversary A is to distinguish whether the oracle f ob-
tained from F or G. The advantage of A in distinguishing
F from G is defined by

Ad”A(F’G)=|PfiF[A:1]_P/iG[A=1]|'

Here P, 7 [A = 11 is the probability that A output

«——F(or G)

1 when fis selected at random from F (or G).

2.2 3GPP MAC scheme

3GPP MAC scheme operates as follows. Suppose the un-
derlying block cipher E has = - bit blocks. A message M is
first padded and split into a sequence of » »-bit blocks :
M(11,, M[»). Throughout this paper we assume that len-
gth of each message is a multiple of #. The 3GPP MAC
scheme uses a pair of keys K and K’, where K" = K@

Const and Const = 0xAA---A. For any r-block message M =
M[11---M[] the 3GPP MAC computation is as follows. Also
see (Figure 1).

K—™ E K— E K—» E
O[1] ol2} O[3] pr
A ‘
7]
K*—» E
MAC (left-
most /~bits)

(Figure 1) 3GPP integrity Algorithm 79

O0[0] — 0"

for i=1,-,rdo

ITi1 < Okli—1] @ Ml<]

Oklil — ExUILi1)

0 g Okl1] ® 0x[2] @ - B0kl 7]

3GPPMACK(M) < the left-most / bits of
Exg(0k)

retum 3GPPMACk(M)

In this structure the exclusive or of the outputs from all
block computations is xored to the input of the final block
computation. The MAC on the input message consists of
the left-most / bits of the output #-bit from this compu-
tation. Note that the 3GPP integrity algorithm 9 specified
in the 3GPP technical specification[11] provide the KASUMI
that produces a 64-bit output from a 64-bit input uﬁder the
control of an 128-bit key, as the underlying block cipher and
use left-most 32 bits as the 3GPP MAC value.

In what follows it will be convenient for us to think of
3GPP MAC as using two functions fand " instead of Ex

and E g, respectively. We do these by denoting fto be Ex
for a randomly chosen key K and f tobe E g for a second

key K’.Note that "f is derived from f. Now, we may write

3GPPMAC,(M) < the left-most / bits of £ (0,),

0= 0,11 ®0O;[2] ® - ® Ol 7],
0,Li1=fU[i]), and I[i]1= O;[i—11 ® M[i] for 1<i<w

w here

We consider two function families related to 3GPP MAC.
A family 3GPPMAC p,.,, is a set of functions 3GPPMAC;, for
all f e Perm, and a family 3GPPMAC for a block cipher F
is a set of functions 3GPPMAC, for all feF.

3. Security of 3GPP MAC

3.1 Main results

In this section we show that the security of 3GPPMACr
is reduced to the security of the underlying block cipher F.
This reduction-based approach on the security of MAC was
introduced by Bellare et al. [1]. We call a block cipher is
secure if it is a pseudorandom permutation which means that
no attacker with polynomially many encryption queries can
distinguish between block cipher and perfect random permu-
tation. This approach for modeling the security of a block
cipher was suggested by Luby and Rackoff [7].

To present the theorem we define what it means by that
the adversary succeeds in breaking the 3GPP MAC scheme.
Throughout the paper we denote by # the length of blocks
in block cipher F. Also, we denote by M| the number of
blocks in the string M.

[Definition 1]
Let F: K x{0,1}" — {0,1}" be a block cipher and A be
a probabilistic oracle Turing machine (the adversary). Con-
sider the following stochastic experiment. First, a function
f is selected randomly from F. Then A gets to see the
3GPPMAC value of messages M\, Ms, -, M,_, which it
chooses adaptively, i.e., M; is chosen based upon the values
3GPPMAC(M;), j=1,,i—1 and upon the random tape
o A We say that an adversary A (,q,0,¢) breaks the
3GPPMACr scheme if for an adversary A who runs in time

at most t and makes at most q oracle queries which

q
satisfying Zl M| <o,

P[A outputs (M, , 3GPPMAC,(M,)1 = ¢

where M, is different from all the previous queries M,,
My, -, M,_,. Here the probability is defined over the ran-
dom choice of fe= F and the random tape of A.

We first start by checking the possibility of disting—
uishing a random function in R ., from a random function
in 3GPPMAC gy, We show that even a computationally

unbounded adversary cannot gain too much advantage.

JCPP FEY 2UElE 92 S87ts Y 675

[Theorem 1]

Let A be an adversary that makes queries to a random
function chosen either from 3GPPMAC popm, OF from R ...
Suppose that A asks its oracle q queries, these queries
having aggregate length of o blocks. Then

1.50%+ 4%

AdvaQGPPMAC pum,, R pomt) € =

The' above theorem gives the information-theoretic bound
on the security of 3GPP MAC. The proof of Theorem 1 is
in Section 3.2. As we know if MAC algorithm preserves
pseudorandomness, the MAC resists existential forgery un-
der adaptively chosen message attack[1]}. Using this fact and
Theorem 1 we can obtain the following main result.

[Theorem 2]
Let F < Perm, be a family of permutations. Let ¢, t=(

be real numbers and g, be positive integers. If there
exists an adversary A that (t,q,0,¢) breaks 3GPPMACk,

then there exists an adversary A’ distinguishing F from
Perm,, with the following property.

1.56%+4> 1

Advy (F , Perm,) > € — o1 o -

Here A’ makes at most ¢ queries and runs in time at most
t', where t' = t+O0(on).

The block cipher KASUMI, which is the underlying block
cipher of 3GPP MAC scheme, is a pseudorandom permu-
tation family [5, 6]. This implies an inability to forge 3GPP
MAC with good probability.

Proof of Theorem 2 : We are given an adversary A that
(t, 4,0, ¢) breaks 3GPPMACr. From this adversary we can
easily build an adversary A” that distinguishing 3GPPMACr

from R ..., and having
Adva- (3GPPMACF, R)z e— 271 (3.1)

Let A” be given an oracle for a function g:({0,1}™)*
—{0,1}". The adversary A” uses its oracle to answer A’s
queries. When A makes its first oracle query M;, A” pauses
and computes g(M;) using its own oracle g. The value
g(M;) is returned to A and the execution of the latter
continues in this way until all its oracle queries are
answered. Finally A” takes the output of A, (M,, 7), and

checks if the forgery is successful by asking its oracle
whether g(M,) = 7. If the forgery is successful, A” outputs

576 ZEMeEEl=2Xl C M9-CT HM4z=(2002.8)

1, and otherwise 0. Since A (¢,¢, 0, ¢) breaks 3GPPMACF,

[A"=1]=z¢

P &
¢ RscrPMACE

and
P i [A”=1]1=22""
g«—Rup;

which complete the equation (3.1). The aggregate length of
all queries of A” is at most ¢ and A” runs in time at most
t+ O(no).

Now we show that if we are given an adversary A” dis-

tinguishing 3GPPMACr from R,._ , then we can build an
adversary A’ distinguishing F from' Perm, such that

Advy (F, Perm,)
> Adv 4 (3GPPMAC F, R,,»-.[)
— Adv 4+ (3GPPMAC ppm., Runr) (32)

and, furthermore, A’ makes at most ¢ queries and runs in
time at most ¢, where ¢ = t+ O(no).

Adversary A’ gets an oracle 7:{0,1}* —{0,1}". It will
run A” as a subroutine, using f to simulate the oracle g «—
3GPPMAC, that A” expects. That is, A’ will itself provide
the answers to oracle queries of A” by appropriately using
f. When A” makes its first oracle query M,, algorithm A’
pauses and computes 3GPPMAC;(M,). The value 3GPPMAC;
(M) is returned to A” and the execution of the latter con-
tinues in this way until all its oracle queries are answered.
Now A” will output its guess bit ». Adversary A’ simply
returns the same as its own guess bit. We know that A’
makes at most ¢ oracle queries and runs in time at most #°.

We now proceed to the analysis.

AdUA'(F, Permn)
—1P g A =11-P 4 [A=1]

=P (4" =11

¢ Xoscepuac,

[A” =11l.

¥4 LBGPPMAC Perm.

On the other hand,

Adv 4 (3GPPMACpem, s R = 1)
(A" =1]

¢ & 3GPPMAC o,

_Pg‘_R?R‘.-.’[A :1]1'

Take the sum of the two equation above, we obtain the

equation (3.2).

Combining (3.1), (3.2) and Theorem 1 we have

Advy (F, Perm,)

2 2
>Adv 4 (3GPPMAC 5, R py) — £520_T—4)
2 2
S 6o (1.50_*1}-(1) gt
2"
which completes proof.]

3.2 Proof of Theorem 1

Note that the second permutation f in 3GPPMAC,(-) is
derived from #. In order to prove Theorem 1 we first will
prove the result of theorem when the second permutation
"f is not related to the first permutation f in the 3GPP MAC
scheme. Let f and f* be chosen independently from Perm,,.

For any » -block message M = M[1]---M[»] we now write
3GPPMAC; ; (M) =the left-most ! bits of £'(0),

where 0,= 0,{11® 0,[2] & ®O/[7], O;[i]1=F(I[:D),
and I[i]1= O;[i—11 ® M[i] for 1<:i<». We also set that
a family 3GPPMAC s, is a set of functions 3GPPMACY; »
for all f, ' € Perm, where f and f' are chosen indepen-
dently from Perm,,.

The following Lemma 1 gives the information-theoretic
bound on the security of 3GPPMAC ‘%,

[Lemma 1]
Let A be an adversary that makes queries to a random

function chosen either from 3GPPMAC":,,,, orfrom R ...

Suppose that A asks its oracle q queries, these queries hav-
ing aggregate length of o blocks. Then

Adv s (3GPPMAC pop,, R peen)) < (1—5"2245"1
To prove the Lemma 1 we apply the idea from the proof
of PMAC’s security in [8]. Rogaway started new proof
method by measuring the pseudorandomness of PMAC in
terms of two other functions : the collision probability of
single messages and the collision probability of a fixed pair
of messages. Second, he obtained collision bounds of two
collision probabilities. We follow these steps for 3GPPMAC!.
The main difficulty is in the proof of the first step.
Proof of Lemma 1. Let A be an adversary distinguishing
3GPPMAC.,, from R ,._,. Since the adversary A is not

limited in computational power we may assume it is determi-

nistic. One can imagine A interacting with a 3GPPMAC"%,,.,,

oracle as A playing Game 1 (see (Figure 2)).

1 wnusual — false ; for all x € {0,1}" do f(x) < undefined,
F (x) < undefined
2 When A makes its ¢-th query, M,= M,[1]---M,[»,] where

te {1,-,q)
3 L[1] < M [1]
4 For i=1,-,r, do
5 A—{L)11</<i-1YULI] 1<s<t-1,1<7< 7}
6 if I,[{] € A then 0O,[i]l < 7(I,[i])
7 else 0,[i]i{0,1)"
8 A= FLLDN<;<i—DUFULDI
1<s<t—1,1<j<7}
9 if O,[i1 = Ay then [unusual < true; 0,[z‘]iA,C]
10 FULLLD < 014]
1 if i< 7 then LIi+1] < OJ[i1® Mii+1]

12 0, <0 ® & 0lr]
13 B<{0,|l<s<¢—1)
14 If O, € B then [unusual — true ; MAC, — £ (0,)]

15 else MAC,i{O,l)"-

16 Br—{r(0)1<s<s~1}
17 if MAC, e B then [unusual < true; MAC,LB?]
18 £ (0, — MAC,

19 3GPPMAC)} (M,) —the left-most /-bit of MAC,
20 Retwn 3GPPMAC);(M,)

(Figure 2) Game 1 : Simulation of 3GPPMAC'p,,

Here we use Af (or BS) to denote {0,1}"— A, (or B,).
Two particular permutations f and f are equally likely a-
mong all permutations from {0,1}” to {0,1}”. In our analy-
sis, we view the selection of f and f as an incremental
procedure. This is equivalent to selection fand f uniformly
at random. This game perfectly simﬁlates the behavior of

3GPPMAC s,

We observe that if the wnusual is not set to true in an ex-
ecution of the game, then the returned value 3GPPMACY ,
(M,) at line 20 is random since the left-most /-bit of the

string randomly selected at line 15. Hence we have that

Adv 4 (3GPPMAC b0 R nt)

< P[unusual — true in Game 1] (3.3)

First we consider the probability that wnusual — true in
line 9 or 17. In both cases, we have just chosen a random

n-bit string and then we check whether it is a element in

3GPP F&Y ¢N2E 99 SYts 2Ty 577

a set or not. We have that

Pl unusual—true in line 9 or 17 in Game 1]

— _ 2 2
1+2++ (o ;)n+1+ +(g—1) < azntiz (3.4)

Now we can modify Game 1 by changing the behavior
when wunusual<— true, and adding as a compensating factor
the bound given by the equation (3.4). The modified game
is as Game 2 (see (Figure 3)). By the equation (3.4) we have
that

P [unusual — true in Game 1]

2, 2
< P[unusual < true in Game 2] + ‘*gé*,:—lq— (35)

1 wnusual < false ; for all x € {0,1}* do f(x) < undefined,
F (x) < undefined
2 When A makes its ¢-th query, M,= M,[1] --- M,[»,] where

te {1, q

3 It[l] HM:[H

4 For i=1,-,r, do

5 A—A{Lli111s/<i=-1YULLIG T 1S s<t~1,1<j<7,}
6 if ,[i] € A then O,[i] < f(L,[i])

7 else [0,[i11<2-(0,13"; F(LLiT) < O,[i1]

8 if i<r, then L[i+1] < O[:i]1® M,li+1]

9 0, <011 ® D0l

10 B<{0,]1<s<t—1}

11 If O, c B then wnusual — true

12 mac, B o1y

13 (0, — MAC;

14 3GPPMACL, (M,) <the left-most [-bit of MAC,
15 Return 3GPPMACL, (M,)

(Figure 3) Game 2 : Simplification of Game 1

We note that in Game 2 the value 3GPPMAC} 5 (M,) re-
turned in response to a query M, is a random /-bit string.
We can defer all but the selection of MAC, values in Game
2. This does not change the probability that wnusual<— true.
This modified game is called Game 3, and it is depicted in
(Figure 4).

Now we want to show that the probability of wunwusual<«
true in Game 3, over the random MAC, values selected at
line 3 and the random O,[:] values selected at line 12, is
small. We show something stronger : even if one arbitrarily
fixes the values of MAC,, -, MAC, € {0,1}", the probabili-
ty that wnusual<true is still small. Since the oracle answers

have now been fixed and the adversary is deterministic, the

578 MEMelEsli=EX C M9-CT M4z(2002.8)

queries MAC,, -+, MAC, that the adversary will make have

likewise been fixed. The new game is called Game 4(C)(see
Figure 5). It depends on constants C = (¢, MAC,, -, MAC,,

My, M),

1 wunusual < false ; for all x = {0,1}" do f(x) < undefined,
F (x) <—undefined
2 When A makes its ¢-th query, M,= M,[1] - M,[»,] where
te{l,-.q)
R M
3 MAC, —{0,1}
4 3GPPMAC!, (M,) <the left-most /-bit of MAC,
5 Return 3GPPMAC),(M,)

6 When A is done making its ¢ queries
7 For t=1,--,¢4 do

8 LI1] < M[1]

9 For i=1,-,r, do

10 A—{Li111<;<i- YU 1 <s<¢-1,
1<j<#}

1 if Llile A then O[]« F(LLiD

12 dse[011 <X (0.1)"; ALLD < 00411

13 if i<r, then I[i+1} < O,[i1® M[i+1]

14 0,< 01 @ ® 0.[r]

15 B—{0,|1<s<t~1)

16 If Fte B then wunusual < true

17 £(0,) — MAC,

(Figure 4) Game 3 : Modification of Game 2

1 wunusual «— false ; for all x € {0,1}" do f(x) < undefined,
f (x) <undefined

2 For ¢t=1,-,9 do

3 L1 <M1

4 For i=1,-,r, do

5 A— 11— UL 1<s<t-1,1<j<7)

6 if L,[i] e A then O,[i] — ALI[]D

7 ese [0l 0,17 AULLD < 0,04]]

8 if i< r, then I[i+1] < O[i1® M[i+1]

9 0, 0ll®®O0lr]

10 B—{0,l1ss<t-1)}

11 It E € B then unusual < true

12 F(0) < MAC,

(Figure 5) Game 4(C)

At this point we know that
P[unusual<true in Game 3]
< méx { P[unusual<true in Game 4(C)]} (3.6)

Thus, by (3.3), (35), and (3.6) we have that
Advy (3GPPMAC 5erm,, R 1)
< méx { P[unusual —true in Game 4(C)] }

6i4+4?
2n+1

+ 37

where, if A is limited to ¢ queries of aggregate length o,
then C specifies ¢, message strings MAC,,-, MAC, of
aggregate block length ¢, and MAC,,--, MAC, € {0,1}".

Finally, we modify Game 4(C) that the flag unusual is

set to true every case that Game 4(C), plus some additional
cases. This game is called Game 5(C) (see (Figure 6)).

1 wunusual — false ; for all x = {0,1}" do f(x) <—undefined,
F (%) <undefined

2 For t=1,-,q do

3 For i=1,--,7 do

4 L{1] < M, [1]; Odil £ o

5 A—{L11<j<i—-1YULI 1 1 <s<t—1,1<7<7}

6 if M,[1]1 =M,[1] for some s< ¢t then O,[1] < ALI[1D

7 else if I,{i] € A then wnusual < true

8 else A(L[i]) < O.lil

9 if <7 then L[i+1] < O,[d & M,[i+1]

10 0, < 0,[11 D @ 0,[7]

11 B—{0,11<s<¢-1}

12 If E € B then wnusual < true

13 £(0,) <0

(Figure 6) Game 5(C)

Notice that in Game 5, we choose a random O,[¢] value
in line 4. First, look at line 6 in Game 4(C). The value I,[¢]
belongs to A for the trivial reason that =1 and M,[1] =
M, [1] for some s < t, or for other non-trivial reasons that
L[i]l =L[j]for j<i,or L[i] = L[] for some s< ¢ ex-
cept i =j=1.If 7,[i] belongs to A for a non-trivial reason,
we effectively give up, setting unusual— true. To avoid that
the game depend on the MAC,-values, we also set f~ ‘o)
to some particular value, 0%, instead of to MAC, in the last

line. The particular value associated to this point is not used
unless wunusual has already been set to true. Thus we have
that

P [unusual —true in Game 4(C)]
< P[unusual <—true in Game 5(C) 1 (3.8)

The coins used in Game 5 are O, = O,[1]--O\[r, 1,--,0,
= 0,[1]1 - 0,[7,], where O,[:] are random coins or are O,[1]
where s is the least number such that s< ¢, and M,[1] =
M,[1] when i =1. Run Game5on M;, -, M, and the indi-
cated vector of coins. Suppose that unusual gets true on this
execution. Then we have the following three cases. Let ¢t e
{1,---,q} be the particular value when wunusual first set to
true.

Case 1 LI[;1=LI[j] for some je= {1,---,i—1)}.

Set 0,[01 =0. Observe that

PILIi1=11;11=PLO,li—1]1 ® O,[i~1]
=M1 ®Mi11=2""

since one of two values, O,[i—1] and O,[j—1], is unifor-

mly random, and there are #, blocks in M,. Thus we have

P[Casel occurs for M,] < (g‘)Z_".

Case 2: L[i1=LI[j] for some se {1,---,t—1}. In this
case we obtain that
PILLiI=L[;j]1=P[O[i— 11D O[/j—1]
=M 1D M[jl1=2""
and

P[Case2 occurs for M, and M, < r,- v, 27"

since |M,|-|M,| < 7, 7,.

Case3: 0,= O, for some s e {1,---,£—1}. Observe that
P[7,= O;1=P[O[1] & - & O,[7,]
= 0,11 ® - D O,[~r,]]=2""

because O; is uniformly random. Thus we have that
P[Case3 occurs for M, and M,]1<2 "

Hence we obtain that

MaX (Pl ypusual — true in Game 5(C)1}

C
max
1 ¥ 7 Lo-n
< q{lstSq(zt)+15s<tsqrsrl+ 1Ss;tsal} 2
o=
o(o—1) | 4° (g—1) 1
< o a7
(2 Tyt) o (39)
9 2+ 2
s—~‘2—77+—1q— (3.10)

Here (3.9) follows because the first sum is maximized with
a single message of length o, while the second sum is
maximized by ¢ messages of length o/q.

Combining (3.7), (3.8) and (3.10) we have that

Adv 4 (3GPPMAC Y., Ry 1)

20+ 4° ol +q?

< 2n+1 2n+1

This completes the proof of Lemma 1. []

3GPP REd LI2E Y /s 28y 579

We now check the possibility of distinguishing a random
function in original 3 GPPMAC p,, from a random function

in 3GPPMACY%.,, .

[Lemma 2]
Let A be an adversary that makes queries to a random func-
tion chosen either from 3GPPMAC p,,,, OFfrom 3GPPMAC':,,,.

Suppose that A asks its oracle q queries, these queries hav—
ing aggregate length of ¢ blocks. Then

Adv A(3GPPMAC perm, , 3GPPMAC 'porm,)

1.506%+¢2

= o

Proof of Lemma 2. Let Col be the event that there is
a collision among the messages in the original 3GPPMAC
scheme and let Col! be the event that there is a collision
among the messages in the 3GPPMAC! scheme. Observe
that since the second function in both schemes is a permuta-
tion, collision probabilities in both scheme do not depend on
the final computations. Thus the following equation holds :

— 1
poe: 3GPPMACP,,,,,,(Col) = Ph<£3GPPMACL¢m_(Col') (3.11)
For the same reason, if no collision occurs, the adversary out~
puts 1 with same probability for 3 GPPMAC and 3 GPPMAC'
because she sees outputs of a random permutation on distinct
points. Namely, the following holds :
gLSGPPMACpm,_(Az 1] Col) (3.12)

(A=1] Col')

h £ 3GPPMAC pom,

where the event Col and Col' are the complements of

Col and Col', respectively. Therefore, by using the equ-
ation (3.11) and (3.12), we can write the adversary’s advan—
tage as follows.

Ady 4 (3GPPMAC porm, , SGPPMAC borm,)

<P (Col")

giacPPMAcM.

To bound this quantity, we now reconsider the proof ‘of
Lemma 1. In the proof of Lemma 1, the Game 1 perfectly
simulates the behavior of 3GPPMACY.,,.,, and we have that

(Col')

P i
& «—— 3GPPMAC pom,

< P(unusual<— true in Game 1)

< 1.5¢%+¢°
2"

580 HEMRIER=EKX C M9-CH H4=2(2002.8)

which completes the proof of Lemma 2. []

Proof of Theorem 1 - From Lemma 1 and 2, Theorem 1
is proved straightforwardly. [

4. Conclusion

In this work we examined the provable security of 3GPP
integrity algorithm £9. We proved that if there is an existen-
tial forgery attack on this MAC scheme, then the underlying
block cipher can be attacked with comparable parameters.
It might be seen as highly unlikely for a 3GPP block cipher
KASUML

References

[1] M. Bellare, J. Kilian, P. Rogaway, “The security of cipher
block chaining,” Advances in Cryptology-Crypto'94, Sprin-
ger—Verlag, LNCS 839, pp.341-358, 1994. An updated ver—
sion can be found in the personal URLs of the authors. See,
for example, http//www-cse.ucsd.edu/users/mihir/.

[2] J. Black and P. Rogaway, “CBC MACs for arbitrary-length
messages : the three-key constructions,” Advances in Cry-
ptology-Crypto'2000, Springer-Verlag, LNCS 1880, pp.197-
215, 2000.

[3] L. Carter and M. Wegman, “Universal hash functions,” J.
of Computer and System Sciences, Vol.18, pp.143-154, 1979.

[4] V. Gligor and P. Donescu, “Fast encryption and authentica-
tion : XCBC encryption and XECB authentication modes,”
Contribution to NIST, Available at http://csrc.nist.gov/en
cryption/modes/, April, 2001.

[5] J. Kang, S. Shin, D. Hong and O. Yi, “Provable security
of KASUMI and 3GPP encryption mode 8,” Advances in
Cryptology-ASIACRYPT '2001, Springer-Verlag, LNCS
2248, pp.255~271, 2001.

{6] J. Kang, O. Yi, D. Hong, and H. Cho, “Pseudorandomness of
MISTY -type transformations and the block cipher KASU-
MIL" ACISP 2001, Springer-Verlag, LNCS 2119, pp.60-73,
2001.

{71 M. Luby and C. Rackoff, “How to construct pseudorandom
permutations and pseudorandom functions,” SIAM J. Com—
put, Vol.17, pp.189-203, 1988.

{81 E. Petrank, C. Rackoff, “CBC MAC for Real-Time Data
Source,” Journal of Cryptology, Vol.13, pp.315-338, 2000.

9] P. Rogaway, “PMAC : A parallelizable message authenti-
cation code,” Contribution to NIST, Available at http://
csre.nist.gov/encryption/modes/, April, 2001.

[10] M. Wegman and L. Carter, “New hash functions and their
use in authentication and set equality,” J. of Computer and
System Sciences, Vol.22, pp.265-279, 1981.

[11]1 3G TS 35.201 “Specification of the 3GPP confidentiality and
integrity algorithm ; Document 1 : f8 and f9 specifica-

tions,”.

g =
e-mail : dwhong@etrirekr
19949 sk o] shejet arAH (s}
1996'd AW E T4 A})
20009 et ST
20008~ 84 FFHAENATL 4

A=
e-mail : shinsu@etrirekr
1995 FAAF (R H- 7 o shal)
AAANSHEAY)
1997d FAdstn FAAA G (AL
20000 7 tigtn A AL (AL
20008 ~HA G ARAFAATL A

g 3 7
e-mail : hsryu@etrirekr
19909 e dista o) #hd & (g
1992d it 3o (A AL
199993 Johns Hopkins University =&}

(24
20008~ 8 FFAAFIATY 4
274

AR FHRT o2, BHATALS

¥ oo
e-mail : kyoil@etrirekr
1981 gFuigtin AxtFeaH(EA}
19833 et Adoiehd "ARAN
842D |
19973 FEtn AT (Al
1819 ~3A FFAANFALTY ARRE
719kl -8/ A A A A9
AARoL: AHRT IC 7lE, AAAA), NzA

