초록
본 논문에서는 영상 내에 존재하는 객체영역의 컬러비와 모멘트를 이용한 영상검색을 제안한다. 객체는 영상의 중심에 위치한다는 가설 하에 미리 정의한 중심영역의 우세컬러를 기반으로 수평-수직 투영을 이용하여 객체영역과 배경영역을 분할함으로써 최적의 공간정보를 획득한다. 또한 영상 내 객체의 회전 및 크기에 불변한 특성을 가지기 위해 컬러비와 모멘트를 특징정보로 이용하며 유사성 측정은 컬러 히스토그램의 구간별 연관성을 고려하기 위해 변형된 히스토그램 인터섹션을 이용한다. 실험결과 제안한 방법이 기존의 영역분할에 의한 방법보다 효율적인 결과를 보였다.
In this paper, we propose a content-based image retrieval using the color ratio and moment of object region. We acquire an optimal spatial information by the region splitting that utilizes horizontal-vertical projection and dominant color. It is based on hypothesis that an object locates in the center of image. We use color ratio and moment as feature informations. Those are extracted from the splitted regions and have the invariant property for various transformation, and besides, similarity measure utilizes a modified histogram intersection to acquire correlation information between bins in a color histogram. In experimental results, the proposed method shows more flexible and efficient performance than existing methods based on region splitting.