An Analysis Method of Superlarge Manufacturing Process Data Using Data Cleaning and Graphical Analysis

데이터 정제와 그래프 분석을 이용한 대용량 공정데이터 분석 방법

  • 박재홍 (삼성중공업 생산운영팀) ;
  • 변재현 (경상대학교 산업시스템공학부, 공학연구원)
  • Published : 2002.06.01

Abstract

Advances in computer and sensor technology have made it possible to obtain superlarge manufacturing process data in real time, letting us extract meaningful information from these superlarge data sets. We propose a systematic data analysis procedure which field engineers can apply easily to manufacture quality products. The procedure consists of data cleaning and data analysis stages. Data cleaning stage is to construct a database suitable for statistical analysis from the original superlarge manufacturing process data. In the data analysis stage, we suggest a graphical easy-to-implement approach to extract practical information from the cleaned database. This study will help manufacturing companies to achieve six sigma quality.

Keywords

References

  1. 김 영상(1999), '공정모니터링 데이터 분석을 위한 편차최소제곱법과 인공신경망의 비교 연구', 한국과학기술원 산업공학과 석사학위논문
  2. 박 성현(1998), '회귀분석' , 민영사
  3. 박 재흥, 변 재현, 김 창현, 정 창원, 최영대(2001), '구간세분화 방법을 이용한 철강산업체의 6시그마 프로젝트 추진사례', '품질혁신' , 제2권, 제1호, pp. 57-66
  4. 배 도선 외 6인(1999), '통계적 품질관리' , 영지문화사
  5. Banks, D. L., Parmigiani, G.(1992), 'Pre-Analysis of Superlarge Industrial Data Sets', Journal of Quality Technology, Vol.24, pp. 115-129
  6. Becker, R. A., Cleveland, W. S.(1987), 'Brushing Scatterplots', Technometrics, Vol.29, pp.115-129
  7. De Mast, J., Rose, K. C. B., Does, R. J. M. M.(2001), 'The Multi-Vari Chart: A Systematic Approach', Quality Engineering, Vol.13, pp.437-447 https://doi.org/10.1080/08982110108918672
  8. MINITAB(2000), Minitab Statistical Software: User's Guide , MINITAB Inc., release 13
  9. Pyle, D.(1999), Data Preparation for Data Mining, Morgan Kaufmann Publishers