DOI QR코드

DOI QR Code

Underlayer for Coercivity Enhancement of Ti/CoCrPt Thin Films

보자력 향상을 위한 Ti/CoCrPt박막의 하지층

  • Published : 2002.06.01

Abstract

Sputtering conditions and various underlayer such as Al, Cu, Ni, Cr, Ag, Mg, Fe, Co, Pd, Au, Pt, Mo and Hf were investigated for coercivity enhancement of 20 nm Ti/CoCrPt thin films in order to increase the coercivity of the films thinner than 20 nm. Among them, Ag and Mg were effective to increase the coercivity. Particularly 2 nm Ag was very effective to increase the coercivity and nucleation field as well as to reduce ${\alpha}$ value in CoCrPt thin film such that the coercivity of 2 nm Ag/18 nm Ti/10 nm CoCrPt film was 2200 Oe. However, it seemed that other coercivity enhancement mechanism operated in CoCrPt films because Ti (002) preferred texture was not developed with Ag underlayer contrary to a general expectation. And the coercivity and nucleation field were decreased when glass substrate with rougher surface was used.

20nm이하의 얇은 박막에서도 높은 보자력이 요구되는 Ti/CoCrPt 수직자기기록박막의 보자력 향상을 위해 Al, Cu, Ni, Cr, Ag, Mg, Fe, Co, Pd, Au, Pt, Mo, Hf등의 여러 하지층과 제조조건이 보자력에 미치는 영향을 조사하였다 이들 중 Ag과 Mg하지층은 Ti/CoCrPt박막의 보자력을 향상시켰으며 특히 2nm Ag 하지층을 사용할 경우 10nm CoCrPt 박막에서 2200 Oe의 높은 보자력을 보일뿐 아니라 $\alpha$값을 낮추는 효과가 있었다. 그러나 Ag를 하지층으로 사용하면 기대와는 달리 Ti(002)면의 우선배향 성장이 전혀 일어나지 않아 보자력 증대에 다른 기구가 작용하는 것으로 판단되었다. 그리고 표면의 거칠기가 큰 기판에서는 보자력뿐만 아니라 역자구생성자계도 감소하였다.

Keywords

References

  1. Abstracts of the 8th Joint MMM-Intermag conference, CA-01 H. Takano;Y. Nishida;A. Kuroda;H. Sawaguchi;T. Kawabe;A. Ishikawa;H. Aoi;H. Muraoka;Y. Nakamura;K. Ouchi
  2. AIT-MINT 2001 workshop on Magnetic Information Storage Technology v.15 N.Y. Park
  3. Ph. D thesis P.W. Jang
  4. IEEE Trans v.37 no.4 S. Jeong;M.E. McHenry;D.E. Laughlin
  5. IEEE Trans. v.37 no.4 W. Peng;R.H. Victora;J.H. Judy
  6. J. Appl. Phys. v.79 no.8 N. Honda;S. Yanase;K. Ouchi;S. Iwasaki https://doi.org/10.1063/1.361326
  7. J. Mag. Soc. Jpn. v.18 no.S1 Y. Matsuda;M. Suzuki;Y. Hirayama;Y. Honda;M. Futamoto https://doi.org/10.3379/jmsjmag.18.99
  8. J. Appl. Phys. v.88 no.11 T. Onoue;A. Takizawa;T. Asahi;T. Osaka https://doi.org/10.1063/1.1323532
  9. J. Appl. Phys. v.85 no.8 I.S. Lee;H. Ryu;H.J. Lee;T.D. Lee https://doi.org/10.1063/1.370019
  10. IEEE Trans. v.33 no.1 Y. Hirayama;M. Futamoto;K. Ito;Y. Honda;Y. Murayama https://doi.org/10.1109/TCOM.1985.1096411
  11. IEEE Trans. v.37 no.4 B. Bian;W. Yang;D.E. Laughlin;D.N. Lambeth
  12. 日本應用磁氣學會, 弟124回 硏究會資料 v.25 Y. Hosoe;K. Tanabashi;Y. Takahashi;H. Nakagawa;A. Kikukawa
  13. J. Magn. Soc. Jpn v.26 no.4 H. Uwazumi;T. Shimatsu;M. Terakawa;Y. Sakai;S. Takenoiri;S. Watanabe;H. Muraoka;Y. Nakamura https://doi.org/10.3379/jmsjmag.26.205
  14. H. Uwazumi, T. Shimatsu, M. Terakawa, Y. Sakai, S. Takenoiri, S. Watanabe, H. Muraoka and Y. Nakamura, J. Magn. Soc. Jpn, 26(4), 205(2002). https://doi.org/10.3379/jmsjmag.26.205