DOI QR코드

DOI QR Code

Takagi-Sugeno Fuzzy Model-Based Iterative Learning Control Systems: A Two-Dimensional System Theory Approach

Takagi-Sugeno 퍼지모델에 기반한 반복학습제어 시스템: 이차원 시스템이론을 이용한 접근방법

  • Chu, Jun-Uk (Dept.of Electronics Engineering, Kyungpook National University) ;
  • Lee, Yun-Jung (Dept.of Electronics Engineering, Kyungpook National University) ;
  • Park, Bong-Yeol (Dept.of Electronics Engineering, Kyungpook National University)
  • Published : 2002.05.01

Abstract

This paper introduces a new approach to analysis of error convergence for a class of iterative teaming control systems. Firstly, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established if the form of T-S fuzzy model. We analyze the error convergence in the sense of induced L$_2$-norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative teaming controller design problem to guarantee the error convergence can be reduced to the linear matrix inequality problem. This method provides a systematic design procedure for iterative teaming controller. A simulation example is given to illustrate the validity of the proposed method.

Keywords

References

  1. S. Arimoto, S. Kawamura, and F. Miyazaki, 'Bettering operation of robots by learning,' Journal of Robotic Systems, vol. 1, no. 2, pp. 123-140, 1984 https://doi.org/10.1002/rob.4620010203
  2. G. Heinzinger, D. Fenwick, B. Paden, and F. Miyazaki, 'Stability of learning control with disturbances and uncertain initial conditions,' IEEE Trans. Automat. Contr., vol. 37, no. 1, pp. 110-114, 1992 https://doi.org/10.1109/9.109644
  3. H. S. Ahn, C. H. Choi, and K. B. Kim, 'Iterative learning control for a class of nonlinear systems,' Automatica, vol. 29, no. 6, pp. 1575-1578, 1993 https://doi.org/10.1016/0005-1098(93)90024-N
  4. H. S. Lee and Z. Bien, 'A note on convergence property of iterative learning controller with respect to sup norm,' Automatica, vol. 33, no. 8, pp. 1591-1593, 1997 https://doi.org/10.1016/S0005-1098(97)00068-X
  5. T. Y. Kuc, J. S. Lee, and K. Nam,'An iterative learning control theory for a class of nonlinear dynamics systems,' Automatica, vol. 28, no. 6, pp. 1215-1221, 1992 https://doi.org/10.1016/0005-1098(92)90063-L
  6. J. A. Frueh and M. Q. Phan, 'Linear quadratic optimal learning control,' INT. J. Control, vol. 73, no. 10, pp. 832-839, 2000 https://doi.org/10.1080/002071700405815
  7. M. French and E. Rogers, 'Non-linear iterative learning by an adaptive lyapunov technique, 'INT. J. Control, vol. 73, no. 10, pp. 840-850, 2000 https://doi.org/10.1080/002071700405824
  8. D. H. Owens and G. Munde, 'Error convergence in an adaptive iterative learning controller,' INT. J. Control, vol. 73, no. 10, pp. 851-857, 2000 https://doi.org/10.1080/002071700405833
  9. C. Ham, Z. Qu, and J. Kaloust, 'Nonlinear learning control for a class of nonlinear systems,' Automatica, vol. 37, pp. 419-428, 2001 https://doi.org/10.1016/S0005-1098(00)00165-5
  10. R. P. Roesser, 'A discrete state-space model for linear image processing,' IEEE Trans. Automat. Contr., vol. AC-20, no. 1, pp. 1-10, 1975 https://doi.org/10.1109/TAC.1975.1100844
  11. Z. Geng, R. Carroll, and J. Xie, 'Two-dimensional model and algorithm analysis for a class of iterative learning control systems,' INT. J. Control, vol. 52, no. 4, pp. 833-862, 1990 https://doi.org/10.1080/00207179008953571
  12. J. J. Lee and J. W. Lee, 'Design of iterative learning controller with VCR servo system,' IEEE Trans. Consumer Electronics, vol. 39, no. 1, pp. 13-24, 1993 https://doi.org/10.1109/30.199589
  13. J. E. Kurek and M. B. Zaremba, 'Iterative learning control synthesis based 2-D system theory,' IEEE Trans. Automat. Contr., vol. 38, no. 1, pp. 121-125, 1993 https://doi.org/10.1109/9.186321
  14. S. S. Saab, 'A discrete-time learning control algorithm for a class of linear time-invariant systems,' IEEE Trans. Automat. Contr., vol. 40, no. 6, pp. 1138-1142, 1995 https://doi.org/10.1109/9.388702
  15. J. E. Kurek, 'Stability of nonlinear parameter-varying digital 2-D systems,' IEEE Trans. Automat. Contr., vol. 40, no. 8, pp. 1428-1432, 1995 https://doi.org/10.1109/9.402234
  16. K. Tanaka, T. Ikeda, and H. O. Wang, 'Robust stabilization of a class of uncertain nonlinear systems via fuzzy control : quadratic stabilizability, control theory, and linear matrix inequalities,' IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 1-13, 1996 https://doi.org/10.1109/91.481840
  17. H. O. Wang, K. Tanaka, and M. F. Griffin, 'An approach to fuzzy control of nonlinear systems : stability and design issues,' IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 14-23, 1996 https://doi.org/10.1109/91.481841
  18. A. R. E. Ahmed, 'On the stability of two-dimensional discrete systems,' IEEE Trans. Automat. Contr., vol. AC-25, no. 3, pp. 551-552, 1980 https://doi.org/10.1109/TAC.1980.1102352
  19. D. Goodman, 'Some stability properties of two-dimensional linear shift-invariant digital filters,' IEEE Trans. Circuits and Systems, vol. CAS-24, no. 4, pp. 201-206, 1977 https://doi.org/10.1109/TCS.1977.1084322