DOI QR코드

DOI QR Code

시변 파라메터를 갖는 선형시스템의 균형화된 모델 간략화

A Balanced Model Reduction for Linear Parameter Varying Systems

  • 류석환 (대구대학교 정보통신공학부)
  • Yoo, Seog-Hwan (Dept.of Information Communication Engineering, Daegu University)
  • 발행 : 2002.05.01

초록

This papaer deals with a model reduction problem for linear systems with time varying parameters. For this problem, a controllability Grammian and an observability Grammian are introduced and computed by solving linear matrix inequalities. Using the controllability/observability Grammian, a balanced state space realization for linear parameter varying systems is obtained. From the balanced state space realization, a reduced model can be obtained by truncating not only states but also time varying parameters and an upper bound of the model reduction error is derived as well.

키워드

참고문헌

  1. L. Pernebo and L. M. Silverman, 'Modern reduction via balanced state space representations,' IEEE Trans. Automatic Control, vol. AC-27, no. 2, pp. 382-387, 1982 https://doi.org/10.1109/TAC.1982.1102945
  2. K. Glover, 'All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds,' Int. J. Control, vol. 39, no. 6, pp. 1115-1193, 1984 https://doi.org/10.1080/00207178408933239
  3. G. A. Latham and B. D. O. Anderson, 'Frequency weighted optimal Hankel norm approximation of stable transfer functions,' Syst. Contr. Lett., vol. 5, no. 4, pp. 229-236, 1985 https://doi.org/10.1016/0167-6911(85)90014-3
  4. B. D. O. Anderson, 'Weighted Hankel norm approximation: Calculation of bounds,' Syst. Contr. Lett., vol. 7, no. 4, pp. 247-255, 1986 https://doi.org/10.1016/0167-6911(86)90037-X
  5. D. G. Meyer, 'Fractional balanced reduction: Model reduction via fractional epresentations,' IEEE Trans. Automatic Control, vol. AC-35, pp. 1341-1345, 1990 https://doi.org/10.1109/9.61011
  6. Y. Liu and B. D. O. Anderson, 'Singular perturbation approximation of balanced systems,' Int. J. Control, vol. 50, pp. 1379-1405, 1989 https://doi.org/10.1080/00207178908953437
  7. G. D. Wood, P. J. Goddard, and K. Glover, 'Approximation of linear parameter varying systems,' Proceedings of the 35th CDC, pp. 406-411, Kobe, Japan, Dec. 1996 https://doi.org/10.1109/CDC.1996.574345
  8. C. L. Beck, J. Doyle, and K. Glover, 'Model reduction of multidimensional and uncertain systems,' IEEE Trans. Automatic Control, vol. 41, no. 10, pp. 1466-1477, 1996 https://doi.org/10.1109/9.539427
  9. L. Xie, M. Fu, and de Souza, C. E., '$H_{\infty}$control and quadratic stabilization of systems with parameter uncertainty via output feedback,' IEEE Trans. Automatic Control, vol. AC-37, pp. 1253-1256, 1992 https://doi.org/10.1109/9.151120
  10. P. Apkarian and P. Gahinet, 'A convex characterization of gain-scheduled $H_{infty}$controllers,' IEEE Trans. Automatic Control, vol. AC-40, no. 5, pp. 853-864, 1995 https://doi.org/10.1109/9.384219
  11. I. Emre Kose and Jabbari, 'Disturbance attenuation for systems with real parametric uncertainty,' Proceedings of American Control Conference, Albuquerque, NM, June 1997 https://doi.org/10.1109/ACC.1997.611083