References
- Biotechnol. Bioeng. v.32 The hydrolysis of triglycerides by immobilized lipase in a hydrophilic membrane reactor Pronk, W.;P.J.A. Kerkhof;C. van Helden;K. Van't Reit https://doi.org/10.1002/bit.260320414
- Biotechnol. Bioeng. v.36 Continuous hydrolysis of oil by immobilized lipase in a counter current reactor Kosugu, Y.;H. Tanaka;N. Tomizuka https://doi.org/10.1002/bit.260360609
- Biotechnol. Bioeng. v.38 Kinetics, mechanism, and time course analysis of lipase-catalyzed hydrolysis of high concentration olive oil in AOT-isooctane reversed micelles Tsai, S.-W.;C. Liching https://doi.org/10.1002/bit.260380213
- Biotechnol. Bioeng. v.38 Use of a lipase immobilized in a membrane reactor to hydrolyze the glycerides of butter oil Malcata, F.X.;C.G. Hill https://doi.org/10.1002/bit.260380807
- Biotechnol. Bioeng. v.33 Characteristics of Immobilized lipase-catalyzed Hydrolysis of olive oil of high concentration in reverse phase systems Kang, S.T.;J.S. Rhee https://doi.org/10.1002/bit.260331114
- Biotechnol. Bioeng. v.40 Continuous hydrolysis of olive oil by immobilized lipase in organic solvent Yang, D.S.;J.S. Rhee https://doi.org/10.1002/bit.260400615
- Bioprocess Eng. v.9 Studies on immobilization of lipase on alumina for hydrolysis of rice bran oil Padmini, P.;S.K. Raskhit;A. Baradarajan https://doi.org/10.1007/BF00389539
- Enzyme Microb. Technol. v.16 Kinetics of lipase enzyme production in organic medium Padmini, P.;S.K. Raskhit;A. Baradarajan https://doi.org/10.1016/0141-0229(94)90160-0
- Biotechnol. Bioeng. v.72 Development of small-size tubular flow continuous reactor for the analysis of operational stability of enzyme in low-water system Pirozzi, D.;P.J. Halling https://doi.org/10.1002/1097-0290(20000120)72:2<244::AID-BIT12>3.0.CO;2-J
- Biotechnol. Bioeng. v.68 Cotinuous Enzymatic esterification of glycerol with (poly)unsaturated fatty acids in a packed-bed reactor Acros, J.A.;H.S. Garcia;C.G. Hill https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<563::AID-BIT11>3.0.CO;2-H
- Biotechnol. Bioeng. v.48 Fatty acids esterification using Nylon-immobilized lipase Zaidi, A.;J.L. Gainer;G. Carta https://doi.org/10.1002/bit.260480607
- Biotechnol. Bioeng. v.46 Factors Affecting the esterification of lauric acid using an immobilized biocatalyst: Enzyme characterization and studies in a wellmixed reactor Lima, V.;F. Pyle;J.A. Asenjo https://doi.org/10.1002/bit.260460110
- Biotechnol. Bioeng. v.41 An ultrafiltration membrane bioreactor for the lipolysis of olive oil in reversed miceller media Prazer, D.M.F.;F.A.P. Garcia;J.M.S. Cabral https://doi.org/10.1002/bit.260410802
- Lipases Lipases Brockman, H.L.;B. Borgstrom(ed.);H.L. Brockman(ed.)
- Food Chemistry Lipase-catalyzed reactios Richardson, J.;D.B. Hyslop
- Biotechnol. Bioeng. v.39 Hydrolysis of butter oil by immobilized lipase using a hollow-fiber reactor: PartⅡ. Uniresponse kinetic studies Malcata, F.;C. Hill;C. Amundson https://doi.org/10.1002/bit.260391003
- Biotechnol. Bioeng. v.39 Hydrolysis of butter oil by immobilized lipase using a hollow-fiber reactor: Part Ⅲ. Multiresponse kinetic studies Malcata, F.;C. Hill;C. Amundson https://doi.org/10.1002/bit.260391004
- Biotechnol. Bioeng. v.30 Evaluation of half-life of immobilized enzyme during continuous reaction in bioreactors: A theoretical study Yamane, T.S.;S. Pramote;S. Shoichi https://doi.org/10.1002/bit.260300807
- Bioprocess Eng. v.7 Reactor design for the enzymatic isomerization of glucose to fructose Illanes, A.;M. Zuniga;S. Contreras;A. Guerrero https://doi.org/10.1007/BF00369546
- Biotechnol. Bioeng. v.41 Analysis of substrate protection of an immobilized glucose isomerase reactor Houng, J.;H. Yu;K. Chen https://doi.org/10.1002/bit.260410408
- Biotechnol. Bioeng. v.50 Thermal inactivation of immobilized penicillin acylase in the presence of substrate and products Illanes, A.;C. Altamirano;M. Zuniga https://doi.org/10.1002/(SICI)1097-0290(19960620)50:6<609::AID-BIT1>3.0.CO;2-O
- Bioprocess Eng. v.14 Simulation of glucose isomerase reactor: optimum operating temperature Abu-Reesh, I.;N. Faqir https://doi.org/10.1007/BF01464735
- Biotechnol. Bioeng. v.28 Deactivation theory Henley, J.;A. Sadana https://doi.org/10.1002/bit.260280821
- J. Chem. Technol. Biotechnol. v.73 Stabilisation of β-glucosidase entrapped in alginate and polyacrylamide gels towards thermal and proteolytic deactivation Ortega, N.;M. Busto;M. Perez-Mateos https://doi.org/10.1002/(SICI)1097-4660(199809)73:1<7::AID-JCTB921>3.0.CO;2-#
- Advances in Bioprocess Engineering Enzyme reactor performance under thermal inactivation Illanes, A.;C. Altamirano;O. Cartagena;E. Galindo(ed.);O. Ramirez(ed.)
- Biocatalysis in Organic Synthesis Biocatalysis in organic synthesis Lilly, M.D.;J.M. Woodley;J. Tramper(ed.);H.C. van der Plaas(ed.);P. Linko(ed.)
- Biotechnol. Bioeng. v.13 A comparative study of immobilized amyloglucosidase in a packed bed reactor and a continuous feed stirred tank reactor O'Neill, S.P.;P. Dunnill;M.D. Lilly https://doi.org/10.1002/bit.260130302