Heat Transfer Enhancement by the Combined Effect of Louver Angle and Angle of Attack of Vertex Generator

와류발생기의 충돌각과 루버각의 상호작용에 의한 열전달촉진

  • 박병규 (한국기계연구원 열유체공정기술연구부) ;
  • 정재동 (세종대학교 기계공학과) ;
  • 이준식 (서울대학교 기계항공공학부)
  • Published : 2002.06.01

Abstract

A numerical investigation of the performance of the plate heat exchanger with rectangular winglet is conducted to examine the combined effect of vortex generator and louver fins. Velocity and temperature fields and spanwise averaged Nu and friction factor are presented. Enhancement of heat transfer and flow loss penalty is evident. A Parametric study of three factors (Re, angle of attack and louver angle) with levels of 5 (Re= 300, 500, 700, 900, 1100), 4($\alpha=15^{\circ}, 30^{\circ}, 45^{\circ}, 90^{\circ},$), and 4($\beta=0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}$), respectively, indicates the performance defined by the ratio of heat transfer enhancement to flow loss penalty shows monotonic behavior for each parameter alone but the interactions between parameters is found to be considerable effect on the performance of heat exchanger and should be considered in design. The effect of stamping is also examined.

Keywords

References

  1. Experimental Thermal and Fluid Science v.11 Heat transfer surface enhancement through the use of longitudinal vortices: A review of recent progress Jacobi, A. M.;Shah, R. K. https://doi.org/10.1016/0894-1777(95)00066-U
  2. Experimental Thermal and Fluid Science v.4 Heat transfer enhancement and drag by longitudinal vortex generators in channel flows Fiebig, M.;Kallweit, P.;Mitra, N. K.;Tiggelbeck, S. https://doi.org/10.1016/0894-1777(91)90024-L
  3. Int. J. Heat Mass Transfer v.37 Heat transfer enhancement in fin-tube heat exchangers by winglet type vortex generators Biswas, G.;Mitra, N.K.;Fiebig, M. https://doi.org/10.1016/0017-9310(94)90099-X
  4. J. Heat Transfer v.117 Numerical analysis of heat transfer and flow loss in a parallel plate heat exchanger element with longitudinal vortex generators as fins Fiebig, M.;Guntermann, Th.;Mitra, N. K. https://doi.org/10.1115/1.2836284
  5. Int. J. Heat Mass Transfer v.41 Conjugate heat transfer of a finned oval tube with a punched longitudinal vortex generator in form of a delta winglet-parametric investigations of the winglet Chen, Y.;Fiebig, M.'Mitra, N. K. https://doi.org/10.1016/S0017-9310(98)00076-3
  6. Int. J. Heat Mass Transfer v.43 Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators Chen, Y.;Fiebig, M.;Mitra, N. K. https://doi.org/10.1016/S0017-9310(99)00157-X
  7. Principles of enhanced heat transfer Webb. R. L.
  8. Heat Exchangers:Theory and Practice Heat transfer and flow friction characteristics of louvered heat exchanger surfaces Davenport, C. J.
  9. Int. J. Heat Mass Transfer v.43 Heat and momentum transfer for compact louvered fin-and-tube heat exchangers in wet conditions Wang, C.-C.;Lin, Y.T.;Lee, C.-J. https://doi.org/10.1016/S0017-9310(99)00375-0
  10. Int. J. Heat Mass Transfer v.44 A numerical investigation of louvered fin-and-tube heat exchangers having circular and oval tube configurations Leu, J.-S.;Liu, M.-S.;Liaw, J.-S.;Wang, C.-C. https://doi.org/10.1016/S0017-9310(01)00081-3
  11. Int. J. Heat Mass Transfer v.36 Performance evaluation of a vortex generator heat transfer surface and comparison with different high performance surfaces Brockmeier, U.;Guentermann, T. H.;Fiebig, M. https://doi.org/10.1016/S0017-9310(05)80195-4
  12. STAR-CD users guide(Version 3.15)
  13. Fundamentals of Heat and Mass Transfer Incropera, F. P.;DeWitt, D. P.
  14. Int. J. Heat Mass Transfer v.35 Heat transfer in a channel with built-in wing-type vortex generators Biswas, G.;Chattopadhyay, H. https://doi.org/10.1016/0017-9310(92)90248-Q