Laboratory Tests for Trichloroethylene (TCE) and Toluene Remediation in Soil Using Soil Vapor Extraction

토양증기추출(Soil Vapor Extraction)을 이용한 토양 내 Trichloroethylene (TCE)과 Toluene정화 실험

  • 이민희 (부경대학교 환경지질과학과) ;
  • 강현민 (부경대학교 환경지질과학과)
  • Published : 2002.06.01

Abstract

Column experiments were performed to evaluate the removal efficiency of soil vapor extraction (SVE) iota TCE (trichloroethylene) and toluene in soil. Homogeneous Ottawa sands and real soils collected from contaminated area were used to investigate the effect of soil properties and SVE operation conditions on the removal efficiency. In column teats with two different sizes of Ottawa sand, the maximum effluent TCE concentration in a coarse sand column was 442 mg/L and 337 mg/L in a fine sand column. However, after 20 liter gas flushing, the effluent concentrations were very similar and more than 90% of initial TCE mass were removed from the column. For two real contaminated soil columns, the maximum effluent concentration decreased 50% compared with that in the homogeneous Ottawa coarse sand column, but 99% of initial TCE mass were extracted from the column within 40 liter air flushing, suggesting that SVE is very available to remove volatile NAPLs in the contaminated soil. To investigate the effect of contaminant existing time on the removal efficiency, an Ottawa sand column was left stable for one week after TCE was injected and the gas extraction was applied into the column. Its effluent concentration trend was very similar to those for other Ottawa sand columns except that the residual TCE after the air flushing showed relatively high. Column tests with different water contents were performed and results showed high removal efficiency even in a high water content sand column. Toluene as one of BTEX compounds was used in an Ottawa sand column and a real soil column. Removal trends were similar to those in TCE contaminated columns and more than 98% of initial toluene mass were removed with SVE in both column.

토양증기추출(Soil Vapor Extraction)법을 이용하며 대표적 휘발성 NAPL(Non-aqueous phase liquid)인 TCE (trichloroethylene)와 toluene을 토양으로부터 제거하는 칼럼 실험을 실시하였다. 균질한 Ottawa sand와 실제 오염지역의 토앙들이 사용되었으며, 토양특성 및 증기추출 조건들이 정화효율에 미치는 영향을 규명하였다. 직경 2.5cm, 길이 30cm인 유리 칼럼이 사용되었고, 붉은색으로 염색된 TCE 또는 toluene 4 gram이 주입되었다 주입 공기가 일정한 속도로 칼림 내에 주입될 수 있도록 공기 유량계를 설치하여 0.03 L/min의 일정한 속도로 공기가 주입되도록 하고, 퍼지 장치를 설치하여 주입 공기의 습윤도를 99% 이상으로 유지하였다. 칼럼으로부터 유출되는 가스는 자동 가스시료주입 밸브장치를 이용하여 가스크로마토그래피 칼럼 내로 주입되게 하여, FID 검출기로 유출 가스 농도를 분석하였다. Ottawa sand로 충진된 칼럼실험에서는 매질의 입자크기, 함수율, 토양 내 오염물 체류시간 등을 변화시켜 실험을 반복하였다. TCE로 오염된 세립질 Ottawa sand 칼럼실험에서 유출 공기의 최대 농도는 조립질 Ottawa sand 칼럼의 유출 농도보다 약 20% 정도 감소하였고, 오염지역의 실제토양 칼럼실험에서는 최대유출농도가 조립질 Ottawa sand칼럼의 농도보다 약 50% 감소하였으나, 20 liter 공기 주입 후부터는 모두 비슷한 농도감소 현상을 나타내었으며 초기 주입량의 90 % 이상이 제거되었다. 함수율증가에 따른 유출공기의 농도 감소는 거의 나타나지 않았으며, TCE 주입 후 7일 동안 방치하였다가 SVE를 실시한 칼럼 실험에서도 잔류하는 TCE의 양이 약간 증가하였지만 20liter 공기 추출 후에는 초기 주입량의 90% 가, 40 liter 공기 추출 후에는 98% 이상이 제거되었다. Toluene 으로 오염된 칼럼 실험에서도 TCE와 비슷한 제거 경향을 나타냈으며 200 liter 공기 추출 후에는 오염물 초기 주입량의 98% 이상이 제거되었다. 본 실험 결과로부터 증기추출법을 이용한 TCE, toluene 정화 효율성이 규명되었으며, 휘발성 NAPL로 오염된 실제 토양을 복원하기위한 SVE법의 적용가능성을 확인할 수 있었다.

Keywords

References

  1. 오염토양 정화기술 개발, 선도기술개발사업 유해폐기물 처리기술 사업(1차년도보고서) 환경부
  2. AWD Technologies integrated AquaDetox SVE Technology: Applications Analysis Report. EPA/540/A5-91/002 EPA
  3. Subsurface volatilization and ventilation system(SVVS). EPA/540/R-94/529 EPA
  4. UVB (Vacuum Vaporization Well) system for treatment of VOC-contaminated soils: Innovative technology evaluation report. EPA/R-99/011 EPA
  5. Journal of Contaminant Hydrology v.33 Assessment of nonequilibrium in gas-water mass transfer during advective gas-phase transport in soils Fischer, U.;Hinz, C.;Schulin, R.;Stauffer, F. https://doi.org/10.1016/S0169-7722(98)00068-0
  6. Journal of Hazardous Materials v.40 Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction Frank, U.;Barkley, N. https://doi.org/10.1016/0304-3894(94)00069-S
  7. Groundwater Monitoring Review v.10 A practical approach to the design, operation, and monitoring of in situ soilventing systems Johnson, P.C.;Stanely, C.C.;Kemblowski, M.W.;Byers, D.L.;Colthart, J.D. https://doi.org/10.1111/j.1745-6592.1990.tb00347.x
  8. Journal of Hydrology v.194 Estimation of cleanup time for continuous and pulsed soil vapor extraction Kaleris, V.;Croise, J. https://doi.org/10.1016/S0022-1694(96)03213-1
  9. Journal of Contaminant Hydrology v.41 Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continous or pulsed operation Kirtland, B. C.;Aelion, C.M. https://doi.org/10.1016/S0169-7722(99)00071-6
  10. Groundwater chemicals desk reference Montgomery, J. H.;Welkom, L. M.
  11. Journal of Hazardous Materials v.69 Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems 2. Field study Poppendieck, D. G.;Loehr, R. C.;Webster, M. T. https://doi.org/10.1016/S0304-3894(99)00063-1
  12. Journal of Contaminant Hydrology v.32 Optimal flow rates and well locations for soil vapor extraction design Sawyer, C. S.;Kamakoti, M. https://doi.org/10.1016/S0169-7722(97)00080-6
  13. Water Resources Research v.31 An experimental investigation of rate-limited nonaqueous phase liquid volatilization in unsaturated porpous media: Steady state mass transfer Wilkins, M. D.;Abriola, L. M.;Pennell, K. D. https://doi.org/10.1029/95WR01677
  14. Journal of Contaminant Hydrology v.54 Effect of water content on transient nonequilibrium NAPL-gas mass transfer during soil vapor extraction Yoon, H.;Kim, J. H.;Liljestrand, H. M.;Khim, J. https://doi.org/10.1016/S0169-7722(01)00164-4