DOI QR코드

DOI QR Code

ESTIMATES OF THE BERGMAN KERNEL FUNCTION ON PSEUDOCONVEX DOMAINS WITH COMPARABLE LEVI FORM

  • Published : 2002.05.01

Abstract

Let $\Omega$ be a smoothly bounded pseudoconvex domain in $C^{n}$ and let $z^{0}$ $\in$b$\Omega$ a point of finite type. We also assume that the Levi form of b$\Omega$ is comparable in a neighborhood of $z^{0}$ . Then we get precise estimates of the Bergman kernel function, $K_{\Omega}$(z, w), and its derivatives in a neighborhood of $z^{0}$ . .

Keywords

References

  1. Ann. of Math. v.126 Subelliptic estimates for the a-Neumann problem on pseudoconvex domains D. W. Catlin https://doi.org/10.2307/1971347
  2. Math. Z. v.200 Estimates of invariant metrics on pseudoconvex domains of dimension two D. W. Catlin https://doi.org/10.1007/BF01215657
  3. Trans. Amer. Math. Soc. v.345 Boundary behavior of the Bergman kernel function on some pseudoconvex in $C^n$ S. Cho https://doi.org/10.2307/2154999
  4. Nagoya Math. J. v.140 A construction of peak functions on locally convex domains in $C^n$ S. Cho https://doi.org/10.1017/S002776300000547X
  5. J. Korean Math. Soc. v.33 no.2 Peak function and its application S. Cho
  6. Math. Z. v.222 Estimates of the Bergman kernel function on certain pseudoconvex domains in $C^n$ S. Cho
  7. Boundary behavior of the Bergman kernel function on pseudoconvex domains with comparable Levi form S. Cho
  8. Ann. of Math. v.115 Real hypersurfaces, order of contact, and applications J. D'Angelo https://doi.org/10.2307/2007015
  9. Math. Ann. v.189 Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebieten K. Diederich
  10. Math. Ann. v.203 Uber die 1. und 2 Ableittungen der Bergmanschen Kernfunktion und ihr Rondverhalten K. Diederich https://doi.org/10.1007/BF01431441
  11. Math. Ann. v.237 The Bergman kernel on Uniformly extendable Pseudoconvex domains K. Diederich;G. Herbort;T. Ohsawa
  12. Invent. Math. v.26 The Bergman kernel and biholomorphic mappings of pseudoconvex domains Ch. Fefferman https://doi.org/10.1007/BF01406845
  13. Amer. J. Math. v.116 no.3 A construction of peak functions on some finite type domains J. E. Fornaess;J. McNeal https://doi.org/10.2307/2374998
  14. Nagoya Math. J. v.126 The growth of the Bergman kernel on pseudoconvex domains of homogeneous finite diagonal type G. Herbort https://doi.org/10.1017/S0027763000003986
  15. Math. Ann. v.195 The Bergman kernel function. Differentiability at the boundary N. Kerzman https://doi.org/10.1007/BF01419622
  16. Duke Math. J. v.58 no.2 Boundary behavior of the Bergman kernel function in $C^2$ J. McNeal https://doi.org/10.1215/S0012-7094-89-05822-5
  17. Publ. RIMS. Kyoto Univ. v.20 Boundary behavior of the Bergaman kernel function on pseudoconvex domains T. Ohsawa https://doi.org/10.2977/prims/1195180870

Cited by

  1. Geometry of pseudo-convex domains of finite type with locally diagonalizable Levi form and Bergman kernel vol.85, pp.1, 2006, https://doi.org/10.1016/j.matpur.2005.10.001
  2. Boundary Integrals of the Bergman Kernel pp.1793-6519, 2018, https://doi.org/10.1142/S0129167X18710015
  3. Bergman–Toeplitz operators on weakly pseudoconvex domains pp.1432-1823, 2019, https://doi.org/10.1007/s00209-018-2096-z