References
- Ann. of Math. v.126 Subelliptic estimates for the a-Neumann problem on pseudoconvex domains D. W. Catlin https://doi.org/10.2307/1971347
- Math. Z. v.200 Estimates of invariant metrics on pseudoconvex domains of dimension two D. W. Catlin https://doi.org/10.1007/BF01215657
-
Trans. Amer. Math. Soc.
v.345
Boundary behavior of the Bergman kernel function on some pseudoconvex in
$C^n$ S. Cho https://doi.org/10.2307/2154999 -
Nagoya Math. J.
v.140
A construction of peak functions on locally convex domains in
$C^n$ S. Cho https://doi.org/10.1017/S002776300000547X - J. Korean Math. Soc. v.33 no.2 Peak function and its application S. Cho
-
Math. Z.
v.222
Estimates of the Bergman kernel function on certain pseudoconvex domains in
$C^n$ S. Cho - Boundary behavior of the Bergman kernel function on pseudoconvex domains with comparable Levi form S. Cho
- Ann. of Math. v.115 Real hypersurfaces, order of contact, and applications J. D'Angelo https://doi.org/10.2307/2007015
- Math. Ann. v.189 Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebieten K. Diederich
- Math. Ann. v.203 Uber die 1. und 2 Ableittungen der Bergmanschen Kernfunktion und ihr Rondverhalten K. Diederich https://doi.org/10.1007/BF01431441
- Math. Ann. v.237 The Bergman kernel on Uniformly extendable Pseudoconvex domains K. Diederich;G. Herbort;T. Ohsawa
- Invent. Math. v.26 The Bergman kernel and biholomorphic mappings of pseudoconvex domains Ch. Fefferman https://doi.org/10.1007/BF01406845
- Amer. J. Math. v.116 no.3 A construction of peak functions on some finite type domains J. E. Fornaess;J. McNeal https://doi.org/10.2307/2374998
- Nagoya Math. J. v.126 The growth of the Bergman kernel on pseudoconvex domains of homogeneous finite diagonal type G. Herbort https://doi.org/10.1017/S0027763000003986
- Math. Ann. v.195 The Bergman kernel function. Differentiability at the boundary N. Kerzman https://doi.org/10.1007/BF01419622
-
Duke Math. J.
v.58
no.2
Boundary behavior of the Bergman kernel function in
$C^2$ J. McNeal https://doi.org/10.1215/S0012-7094-89-05822-5 - Publ. RIMS. Kyoto Univ. v.20 Boundary behavior of the Bergaman kernel function on pseudoconvex domains T. Ohsawa https://doi.org/10.2977/prims/1195180870
Cited by
- Geometry of pseudo-convex domains of finite type with locally diagonalizable Levi form and Bergman kernel vol.85, pp.1, 2006, https://doi.org/10.1016/j.matpur.2005.10.001
- Boundary Integrals of the Bergman Kernel pp.1793-6519, 2018, https://doi.org/10.1142/S0129167X18710015
- Bergman–Toeplitz operators on weakly pseudoconvex domains pp.1432-1823, 2019, https://doi.org/10.1007/s00209-018-2096-z