DOI QR코드

DOI QR Code

FIXED POINT THEOREMS, SECTION PROPERTIES AND MINIMAX INEQUALITIES ON K-G-CONVEX SPACES

  • Published : 2002.05.01

Abstract

In [11] Kim obtained fixed point theorems for maps defined on some “locally G-convex”subsets of a generalized convex space. Theorem 2 in Kim's article determines us to introduce, in this paper, the notion of K-G-convex space. In this framework we obtain fixed point theorems, section properties and minimax inequalities.

Keywords

References

  1. J. Math. Anal. Appl. v.132 Some further generalizations of Knaster-Kuratowski-Mazurkiewcz thoerem and minimax inequalities C. Bardado;R. Ceppitelli https://doi.org/10.1016/0022-247X(88)90076-5
  2. J. Math. Anal. Appl. v.137 Applications of the generalized Knaster-Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities C. Bardado;R. Ceppitelli https://doi.org/10.1016/0022-247X(89)90272-2
  3. J. Math. Anal. Appl. v.146 Fixed point theorems and vector-valued minimax theorems C. Bardado;R. Ceppitelli https://doi.org/10.1016/0022-247X(90)90308-3
  4. C. R. Acad. Sci. Paris Ser. I. Math. v.298 Theoremes du minimax A. Granas;F. C. Liu
  5. J. Math. Pures Appl. v.65 Coincidences for set-valued maps and minimax inequalities A. Granas;F. C. Liu
  6. Proc. Am. Math. Soc. v.99 On a minimax inequality of Ky Fan C. W. Ha https://doi.org/10.2307/2046475
  7. C. R. Acad. Sci. Paris Ser. I Math. v.296 Points fixes et coincidences pour les applications multivoques sans convexite C. D. Horvath
  8. Nonliear and Convex Analysis - Proc. in Honor of Ky Fan Some results on multivalued mappings and inequalities without convexity C. D. Horvath
  9. J. Math. Anal. Appl. v.156 Contractibility and generalized convexity C. D. Horvath https://doi.org/10.1016/0022-247X(91)90402-L
  10. Duke Math. J. v.8 A generalization of Brouwer's fixed-point theorem S. Kakutani https://doi.org/10.1215/S0012-7094-41-00838-4
  11. J. Korean. Math. Soc. v.35 Fixed point theorems on generalized convex spaces H. Kim
  12. Numer. Funct. Anal. Optim. v.20 Continuous selection theorems in generalized convex spaces S. Park
  13. Nova Sci. Publ. Huntington Remarks on fixed point theorems for generalized convex spaces, Fixed piont theory and applications S. Park
  14. Korean J. Comput. Appl. Math. v.7 Elements of the KKM theory for generalized convex spaces S. Park
  15. Proc. Coll. Natur. Sci. SNU v.18 Admissible classes of multifunctions on generalized convex spaces S. Park;H. Kim
  16. Proc. Inter. Conf. on Nonlinear Funct. Anal. and Appl. v.1 Fixed point theorems on G-convex spaces and applications K.-K. Tan;X.-L. Zhang;J. K. Kim(ed.)

Cited by

  1. Equilibria and fixed points of set-valued maps with nonconvex and noncompact domains and ranges vol.65, pp.4, 2006, https://doi.org/10.1016/j.na.2005.10.006
  2. A section theorem with applications to coincidence theorems and minimax inequalities in FWC-spaces vol.64, pp.4, 2012, https://doi.org/10.1016/j.camwa.2011.12.061