DOI QR코드

DOI QR Code

Individual identification by extraction of nail bed pattern of the finger nail using confocal scanning optical system

손톱하부면 초상(nail bed) 패턴의 콘포칼 광 스케닝 방법을 이용한 추출과 개인인증

  • Published : 2002.04.01

Abstract

The nail bed is located under the finger nail. The arched portions of the nail bed, which contain a large number of capillary loops, are separated by the valley of the nail bed. The valley of the nail bed does not contain capillary loops. Light is scattered when it propagates through the dermis of skin, and human blood strongly absorbs the light with proper wavelength. By use of the optical properties of the nail bed, we propose an optical technique which extracts the nail bed image of the finger nail. After achieving nail bed images of each individual, we correlated between them. The correlation outputs show that we can identify individuals by comparing the peak heights of the correlation outputs.

혼탁매질인 손톱의 하부면에는 개인별로 상이한 융선과 곡 구조의 패턴인 조상(爪床, nail bed)이 있다. 이중 융선에는 혈액이 흐르는 모세혈관 고리(capillary loop)가 밀집되 있고 융선과 융선은 모세혈관 고리가 밀집되 있지 않은 골로 구분되어 있다. 670nm 파장의 레이저 빛은 피부의 진피(dermis)에서 산란특성을 가지며 혈액에는 강하게 흡수된다. 손톱하부면 조상(nail bed)의 이와 같은 생체-광학적 특성에 착안하여 혼파매질인 손톱하부면에 위치하는 조상(nail bed) 패턴을 얻어내는 콘포칼 광 스케닝(confocal optical scanning) 구조를 특징으로 하는 광학계를 제안한다. 그리고 이를 이용하여 개인별로 상이한 조상(nail bed) 패턴을 추출해 조상(nail bed) 패턴간의 correlation를 구해 비교함으로써 개인을 구별해내는 개인인증 기법을 제안한다.

Keywords

References

  1. IEEE Computer v.33 no.2 BioID: a multimodal biometric identitification system R. W. Frischholz;U. Dieckmann
  2. Opt. Eng. v.36 no.3 Fully phase encoded key and biometrics for security verification B. Javidi https://doi.org/10.1117/1.601259
  3. IEEE Potentials v.20 no.3 Fingerprinting for security R. Adhami;P. Meenen https://doi.org/10.1109/45.954536
  4. IT Professional v.3 no.1 A practical guide to biometric security technology S. Liu;M. Silverman https://doi.org/10.1109/6294.899930
  5. U.S. Patent 5,751,835 Method and apparatus for the automated identification of individuals by the nail beds of their fingernails A. Topping;V. Kuperschmidt;A. Gormley
  6. Proc. SPIE v.2389 Optical tomography, photon migration, and spectroscopy of tissue and model media: theory, human studies, and instrumentation B. Chance;R. R. Alfano;A. Katzir(eds.)
  7. Opt. Soc. Am. v.2 Advances in optical image and photon migration R. R. Alfano;J. G. Fujimoto(eds.)
  8. Opt. Soc. Am. v.3 Biomedical optical spectroscopy and diagnostics E. Sevick-Muraca;D. Benaron(eds.)
  9. Optics Letters v.23 no.2 Three-dimensional location of fluorescent inhomogeneities in turbid media by scanning heterodyne holography G. Indebetouw;T. Kim;T.-C. Poon;B. Schilling https://doi.org/10.1364/OL.23.000135
  10. IEEE Journal of Quantum Electronics v.26 no.12 A review of the optical properties of biological tissues W.-F. Cheong;S. A. Prahl;A.J. Welch https://doi.org/10.1109/3.64354
  11. IEEE Transaction on Biomedical Engineering v.36 no.12 Skin optics M. J. C. Van Gemert(et al.) https://doi.org/10.1109/10.42108
  12. Histology for Pathologists(2nd Edition) S. S. Sternberg(ed.)
  13. Confocal Scanning Optical Microscopy and Related Imaging Systems T. R. Corle;G. S. Kino
  14. J. Opt. Soc. Am. A v.13 no.1 Comparative study of confocal and heterodyne microscopy for imaging through scattering media M. Kempe;W. Rudolph https://doi.org/10.1364/JOSAA.13.000046
  15. App. Opt. v.37 no.13 Penetration depth limits of in vivo confocal reflecting image C. L. Smithpeter(et al.) https://doi.org/10.1364/AO.37.002749
  16. J. Opt. Soc. Am. A v.13 no.5 Efficinet Monte Carlo simulation of confocal microscopy in biological tissue J. M. Schmitt;K. Ben-Letaief https://doi.org/10.1364/JOSAA.13.000952
  17. Quantum Electronics(3rd Edition) A. Yariv
  18. APD Module C5331 Series Instruction Manual. Hamamatsu Photonics K. K.