DOI QR코드

DOI QR Code

Preparation of Nano-size BaTiO3 Powders Using Glycothermal Method

Glycothermal법을 이용한 나노 사이즈 BaTiO3분말의 제조

  • 김병규 (배재대학교 재료공학과) ;
  • 임대영 (배재대학교 재료공학과) ;
  • 노준석 (LG 화학기술연구원 신소재연구소) ;
  • 조승범 (LG 화학기술연구원 신소재연구소)
  • Published : 2002.07.01

Abstract

Barium Titanate(BaTiO$_3$) nanoparticles were prepared at 22$0^{\circ}C$ through glycothermal process by using barium hydroxide and amorphous titanium hydrous gel as precursor and 1,4-butanediol and distilled water as solvent. It is demonstrated that the size of BaTiO$_3$ particles can be controlled by reaction conditions such as various content of 1,4-butanediol/distilled water volume ratio. This processing method can fabricate BaTiO$_3$ powders, which have a narrow distribution and exhibit good dispersion. The particle size of BaTiO$_3$ powders obtained by glycothermal process were about 50 nm to 200 nm on the condition that reaction temperature was 22$0^{\circ}C$ and holding time was 24 h.

본 연구에서는 TiCl$_4$를 가수분해 시켜 제조한 비정질의 titanium hydrous gel과 Ba(OH)$_2$.8$H_2O$를 출발물질로 사용하였으며, 반응용매로써 1,4-butanediol과 distilled water를 이용하여 나노 사이즈 BaTiO$_3$분말을 제조하였다. 용매로써 사용된 1,4-butanediol과 distilled water의 부피비에 따라 입자의 크기를 조절할 수 있으며, 습식화학법의 단점이었던 분말의 응집을 최소화 시킬 수 있다. 그리고 22$0^{\circ}C$의 비교적 낮은 반응온도에서 분산성이 우수하고, 입도분포가 좁은 약 50~200nm의 barium titanate 나노 분말을 제조하였다.

Keywords

References

  1. J. Am. Ceram. Bull. v.65 Processing Monosized TiO₂Powders Generated with HPC Dispersant J. H. Jean;T. A. Ring
  2. Colloids Surf. v.29 Effect of a Sterically Stabilizing Surfactant on the Nucleation, Growth and Agglomeration of Monosized Ceramic Powders J. H. Jean;T. A. Ring https://doi.org/10.1016/0166-6622(88)80123-9
  3. J. Am. Ceram. Soc. v.71 Role of Particles Substructure in the Sintering of Monosized Titania L. H. Edelson;A. A. Glaeser
  4. Pure Appl. Chem. v.50 Preparation and Properties of Monodispersed Colloidal Metal Hydrous Oxides E. Matigevic https://doi.org/10.1351/pac197850091193
  5. J. Am. Ceram. Soc. Bull. v.63 no.2 Thermal Decomposition of Spherical Hydrated Basic Aluminium Sulfate M. D. Sacks;T. Y. Tseng;S. Y. Lee
  6. J. Colloid Interface Sci. v.122 no.1 Preparation of Spherical, Monosized Y₂O₃Precursor Particles D. Sorddet;M. Akinc https://doi.org/10.1016/0021-9797(88)90286-X
  7. J. Am. Ceram. Soc. Bull. v.67 no.10 Hydrothermal Synthesis of Advanced Ceramic Powder W.J. Dawson
  8. U.S. Pat. No. 5112433 Process for Producing Submicron Ceramic Powder of Perovskite Compounds with Controlled stoichio-metric an Particle Size W. J. Dawson;S. L. Swartz
  9. J. Cry. Growth v.219 Hydrothermal Synthesis and Structural Characterization of BaTiO₃Nanocrystals S. W. LU;B. I. Lee;Z. L. Wang;W. D. Samuels https://doi.org/10.1016/S0022-0248(00)00619-9
  10. Mater. Res. Bull. v.19 no.147 T. R. N. Kutty;R. Balachandran
  11. Mater. Res. Bull. v.22 no.99 R. Vivekanadan;S. Philip;T. R. N. Kutty
  12. Nature v.317 no.12 Synthesis of Silica-sodalite from Non-aqueous System D. M. Bibby;M. P. Dale https://doi.org/10.1038/317157a0
  13. Solid State Ionics v.32/33 Preparation of Controlled Size Metal Powder in the Micronic and Submicronic Range:A New Process from Polyol Solutions F. Fievet;M. Figlarz;J. P. Lagier https://doi.org/10.1016/0167-2738(89)90222-1
  14. Inorg. Chem. v.27 no.2 An Ethylene Glycol Derivative of Boehmite M. Inoue;Y. Kondo;T. Inui https://doi.org/10.1021/ic00275a001
  15. J. Am. Ceram. Soc. v.72 no.2 Formation of Microcrystalline α-Alumina by Glycothermal Treatment of Gibbisite M. Inoue;H. Tanino;Y. Kondo;T. Inui https://doi.org/10.1111/j.1151-2916.1989.tb06134.x
  16. J. Am. Ceram. Soc. v.73 no.4 Thermal Reaction of Aluminum Alkoxide in Glycols M. Inoue;H. Kominami;T. Inui https://doi.org/10.1111/j.1151-2916.1990.tb05164.x
  17. J. Am. Ceram. Soc. v.74 no.6 Synthesis Yttrium Aluminum Garnet by the Glycothermal Method M. Inoue;H. Otsu;H. Kominami;T. Inui https://doi.org/10.1111/j.1151-2916.1991.tb04129.x
  18. Ceramic Transaction v.54 Science, Technology, and Applications of Colloidal Suspensions;Morphological Control of α-Al₂O₃ in 1,4-Butanediol Solution S. B. Cho;S. Venigalla;J. H. Adair;J. H. Adair(ed.);J. A. Casey(ed.);C. A. Randall(ed.);S. Venigalla(ed.)
  19. J. Am. Ceram. Soc. v.79 no.1 Morphological Forms of α-Alumina Particles Synthesized in 1,4-Butanediol Solution S. B. Cho;S. Venigalla;J. H. Adair https://doi.org/10.1111/j.1151-2916.1996.tb07884.x
  20. J. Am. Ceram. Soc. v.81 no.6 Size and Shape Control of α-Alumina Particles Synthesized in 1,4-Butanediol Solution by α-Alumina and □-Hematite Seeding N. E. Bell;S. B. Cho;J. H. Adair https://doi.org/10.1111/j.1151-2916.1998.tb02498.x
  21. American Chemical Society Symposium High Temperature Synthesis of Materials Glycothermal Synthesis of Alpha Aluminum Oxide N. E. Bell;S. B. Cho;J. H. Adair
  22. J. Kor. Association of Crystal Growth v.7 no.1 Synthesis and Characterization of the Ultrafine ZnFe₂O₄ Powder by Glycothermal D. S. Bae;K. S. Han;S. B. Cho;S. H. Choi
  23. J. Am. Ceram. Soc. v.79 no.11 Kinetic and Mechanisms of Hydrothermal Synthesis of Barium Titanate J. O. Eckert Jr.;C. C. Hung-Housten;B. L. Gersten;M. M. Lenncka;R. E. Riman https://doi.org/10.1111/j.1151-2916.1996.tb08728.x
  24. J. Am. Ceram. Soc. v.77 no.12 Effect of Particle Size on the Room-temperature Crystal Structure of Barium Titanate B. D. Begg;E. R. Vance;J. Nowotny https://doi.org/10.1111/j.1151-2916.1994.tb04568.x
  25. J. Am. Ceram. Soc. v.72 no.8 Dependence of the Crystal Structure on Particle Size in Barium Titanate K. Uchino;E. Sadanaga;T. Hirose https://doi.org/10.1111/j.1151-2916.1989.tb07706.x
  26. J. Am. Ceram. Soc. v.79 no.4 Effect of Crystalline Size on the Ferroelectric Domain Growth of Ultrafine BaTiO₃ Powder H. I. Hsiang;F. S. Yen https://doi.org/10.1111/j.1151-2916.1996.tb08547.x
  27. J. Am. Ceram. Soc. v.71 Kinetic of Barium Titanate Synthesis W. Hertl https://doi.org/10.1111/j.1151-2916.1988.tb07540.x
  28. Powder Technol. v.57 Characterization of Barium Titanate Fine Powders Formed from Hydrothermal Crystallization R. Vivekanandan;T. R. N. Kutty https://doi.org/10.1016/0032-5910(89)80074-9
  29. J. Mater. Chem. v.4 Wet Chemical Syntheses of Ultrafine Multi-component Ceramic Powders Through Gel to Crystalline Conversion P. Padmini;T. R. N. Kutty https://doi.org/10.1039/jm9940401875
  30. J. Eur. Ceram. Soc. v.19 Evidence of a Dissolution-precipitation Mechanism in Hydrothermal Synthesis of Barium Titanate Powders P. Pascal;C. Christian;V. Jean;L. Anne;T. Bernard https://doi.org/10.1016/S0955-2219(98)00356-2
  31. Handbook of Industrial Crystallization J. Estrin;A. S. Myerson(ed.)
  32. Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization A. D. Randolph;M. A. Larson
  33. Advan. Colloid Interface Sci. v.15 Monodisperse Colloidal Systems, Fascinating and Useful J. T. G. Overbeek https://doi.org/10.1016/0001-8686(82)80003-1
  34. Advan. Colloid Interface Sci. v.28 Preparation of Monodispersed Colloidal Particles T. Sugimoto https://doi.org/10.1016/0001-8686(87)80009-X
  35. J. Am. Chem. Soc. v.72 Theory, Production and Mechanism of Formation of Monodispersed Hydrosols V. K. La Mer;R. H. Dinegar https://doi.org/10.1021/ja01167a001
  36. Precipitation from Homogeneous Solution L. Gordan;M. L. Salutsky;H. H. Willard

Cited by

  1. Effect of the Sintering Temperature on Electrical Properties of Porous Barium-strontium Titanate Ceramics vol.40, pp.1, 2003, https://doi.org/10.4191/KCERS.2003.40.1.005