DOI QR코드

DOI QR Code

Adaptive Learning Control of Electro-Hydraulic Servo System Using Real-Time Evolving Neural Network Algorithm

실시간 진화 신경망 알고리즘을 이용한 전기.유압 서보 시스템의 적응 학습제어

  • 장성욱 (부산대학교 기계공학부 일반대학원) ;
  • 이진걸 (부산대학교 기계공학부 및 기계기술 연구소)
  • Published : 2002.07.01

Abstract

The real-time characteristic of the adaptive leaning control algorithms is validated based on the applied results of the hydraulic servo system that has very strong a non-linearity. The evolutionary strategy automatically adjusts the search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accordance with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time. The feasibility of the newly proposed algorithm was demonstrated through the real-time test.

Keywords

References

  1. N. Saravanan and D. B. Fogel, 'Evolving neurocontrollers using evolutionary programming,' IEEE Conference on Evolutionary Computation, vol. , IEEE Press, Piscataway, NJ, pp. 217-222,1994 https://doi.org/10.1109/ICEC.1994.350013
  2. N. Saravanan and D.B. Fogel, 'Eolving neural control systems,' IEEE Expert, vol. 10, No.3, pp. 23-27,1995 https://doi.org/10.1109/64.393139
  3. D.B. Fogel, 'A 'correction' to some cart-pole experiments,' Evolutionary Programming VI, MIT Press, pp. 67-71, 1996
  4. D. B. Fogel, 'The Advantages of evolutionary computation,' Proc. of BCEC97: BioComputing and Emergent Computation, World Scientific, Singapore, pp. 1-11, 1997
  5. D.B. Fogel and L.J. Fogel, 'Preliminary experiments on discriminating between chaotic signals and noise using evolutionary programming,' Proceedings of the First Annual Conference, MIT Press, pp. 512-520, 1996
  6. K. Chellapilla and D. B. Fogel, 'Two new mutation operators for enhanced search and optimization in evolutionary programming,' in Applications of Soft Computing, Proc. SPIE, vol. 31 :65, pp. 260-269, 1997
  7. T. Back, F. Hoffmeister, and H. P. Schwefel, 'A survey of evolution strategies,' Proceedings of the 4th International Conference on Genetic Algorithms, pp. 2-9, Morgan Kaufmann, 1991
  8. T. Back and H. P. Schwefel, 'Evolutionary computation: An overview,' Proceedings of IEEE International Conference on Evolutionary Computation, pp. 20-29, 1996 https://doi.org/10.1109/ICEC.1996.542329
  9. D. B. Fogel, 'Evolutionary computation: Toward a new philosophy of machine intelligence,' Pisoataway, NJ : IEEE Press. 1995
  10. E. Vonk, L. C. Jain, and R. P. Johnson, 'Automatic generation of neural network architecture using evolutionary computation,' World Scientific Publishing Co., 1997
  11. D. B. Fogel and J. W. Atmar, 'Comparing genetic operators with gaussian mutations in simulated evolutionary processes using linear systems,' Biological Cybernetics, vol. 63:2, pp. 111-114, 1990 https://doi.org/10.1007/BF00203032
  12. T. Back, 'Evolutionary algorithms in theory and practice,' Oxford NY, 1996
  13. H. P. Schwefel, 'Evolution and optimum seeking,' John Wiley NJ, 1995
  14. Z. Michalewicz and D. B. Fogel, 'How to solve it: Modern heuristic,' Springer Verlag, pp. 161-184/335-341,2000
  15. E. Sanchez and M. Tomassini, 'Toward evolvable hardware : The evolutionary engineering approach,' Springer Verlag, pp. 19-47/221-249, 1996
  16. T. Back, U. Hammel, and H. P. Schwefel, 'Evolutionary computation: Commnets on the history and current state,' IEEE Transaction on Evolutionary Computation, vol. 1, no. 1,pp. 3-17,1997 https://doi.org/10.1109/4235.585888
  17. D. B. Fogel, 'An introdution to simulated evolutionary optimization,' IEEE Transaction on Neural Network, vol. 5, no. 1, pp. 3-14,1994 https://doi.org/10.1109/72.265956
  18. S. Haykin, 'Neural networks: A comprehensive foundation,' second Ed. 1999, Prentice-Hall Inc.
  19. J. S. Jang, C. T. Sun and E. Mizutani, 'Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence,' Prentice-Hall Inc., 1997
  20. S. O. Chang and J. K. Lee, 'New approach to real time adaptive learning control of neural networks based on an evolutionary algorithm(I),' 2001 IEEE International Symposium on Industrial Electronics, 12-16, June, 2001 https://doi.org/10.1109/ISIE.2001.931997
  21. L. Martha Abell et al., 'The mathematica handbook,' Boston: Academic Press., 1992
  22. User manual, 'PLC818 High performance data acquisition card with programmable gain,' Rev. A2, 1993
  23. C. W. Anderson, 'Learning to control an inverted pendulum using neural networks,' IEEE Control Systems Magazine, vol. 9, no. 2, pp. 31-37, April 1989 https://doi.org/10.1109/37.24809
  24. A. G. Barto, R. S. Sutton, and C. W. Anderson, 'Neuronlike adaptive elements that can solve difficult learning control problem,' IEEE Transactions on Systems, vol. 13, no. 5, pp. 835-846, September/October 1983
  25. S. Geva and J. Sitte, 'A cart experiment benchmark for trainable controllers,' IEEE Control Systems, vol. 13, no. 5, pp. 40-51, 1995 https://doi.org/10.1109/37.236324
  26. R. S. Sutton, 'Learning to predict by the methods of temporal differences,' Machine Learning, vol. 3, pp. 9-44, 1988 https://doi.org/10.1023/A:1022633531479
  27. R. S. Sutton and A. G. Barto, 'Reinforcement learning: An introduction,' The MIT Press, 1998
  28. 장성욱, 이진걸, '실시간 적응 학습제어를 위한 진화연산(I),' 대한기계학회 춘계학술대회 논문집B, 제주대학교, pp.724-729, 2001