Rapid Separation of Cellular Cyclosophoraoses Produced by Rhizobium Species

  • Seo, Dong-Hyuk (Department of Microbial Engineering and Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Sang-Hoo (Department of Microbial Engineering and Bio/Molecular Informatics Center, Konkuk University) ;
  • Park, Hey-Lin (Department of Microbial Engineering and Bio/Molecular Informatics Center, Konkuk Universityv) ;
  • Kwon, Tae-Jong (Department of Microbial Engineering and Bio/Molecular Informatics Center, Konkuk University) ;
  • Jung, Seun-Ho (Department of Microbial Engineering and Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2002.06.01

Abstract

A very rapid and efficient separation technique for cellular rhizobial cyclosophoraoses was developed based on fractional precipitation and partition chromatography. Cyclosophoraoses are known to function in the osmotic regulation and root nodule formation of legumes during the nitrogen fixation process. Cyclosophoraoses are produced as unbranched cyclic (1longrightarrow12)-${\beta}$-D-glucans in Agrobacterium or Rhizobium species. Recent research has shown that cyclosophoraoses can form inclusion complexation with various unstable or insoluble guest chemicals, thereby implying great potential for industrial application. Typical separation of pure cellular cyclosophoraoses has been so far carried out by several time-consuming steps, including size exclusion, anion exchange, and desalting liquid chromatographies, with a relatively poor recovery. However, the proposed method demonstrated that the successive application of fractional ethanol precipitation and one step of silica gel-based flash column chromatography was enough to simultaneously purify neutral or anionic forms of cyclosophoraoses. This novel technique is very rapid and provides a high recovery.

Keywords

References

  1. Plant & Soil v.64 Studies on cyclic β-1,2-glucans obtained from periplasmic space of Rhizobium trifolii cells Abe, M.;A. Amemura;S. Higashi https://doi.org/10.1007/BF02372514
  2. Appl. Environ. Microbiol. v.56 Excessive excretion of cyclic β-(1→2)-glucan by Rhizobium trifolii trifolii TA-1 Breedveld, M. W.;L. P. T. M. Zevenhuizen;A. J. B. Zehnder
  3. J. Gen. Microbiol. v.56 Osmotically-induced oligo- and polysaccharide synthesis by Rhizobium meliloti SU-47 Breedveld, M. W.;L. P. T. M. Sevenhuizen;A. J. B. Zender
  4. J. Bacteriol. v.176 Synthesis of glycerophosphorylated cyclic β-(1→2)-glucans by Rhizobium meliloti ndv mutants Breedveld, M. W.;J. S. Yoo;V. N. Reinhold;K. J. Miller https://doi.org/10.1128/jb.176.4.1047-1051.1994
  5. Appl. Environ. Microbiol. v.58 Cyclic β-glucans of members of the family Rhizobiaceae Breedveld, M. W.;K. J. Miller
  6. Appl. Environ. Microbiol. v.61 Effect of phosphate limitation on synthesis of beriplasmic cyclic β-(1→2)-glucans Breedveld, M. W.;A. J. Benesi;K. J. Miller
  7. J. Bacteriol. v.177 A novel cyclic β-1, 2-glucan mutant of Rhizobium meliloti Breedveld, M. W.;J. A. Hadley;K. J. Miller https://doi.org/10.1128/jb.177.22.6346-6351.1995
  8. J. Bacteriol. v.326 Molecular dynamics simulations of cyclohenicosakis[(1→2)-(β-D-gluco-henicosapyranosyl)], a cyclic-(1→2)-β-D-glucans(a 'cyclosophoraoses) of DP 21 Choi, Y.-H.;C.-H. Yang;H.-W. Kim;S. Jung
  9. J. Incl. Phenom. v.2 Preparation of cyclosophoraose-A and its complex-forming ability Koizumi, K.;Y. Okada;M. Ikeda https://doi.org/10.1007/BF00662259
  10. J. Incl. Phenom v.36 Complex forming abillity of a family of isolated cyclosophoraoses with erogosterol and its monte carolo docking computational analysis Kwon, C.;Y.-H. Choi;N. Kim;J. S. Yoo;C.-H. Yang;H.-W. Kim;S. Jung https://doi.org/10.1023/A:1008050432556
  11. J. Microbiol.Biotechnol. v.11 Recovery of cholesterol from the β-cyclodextrin-cholesterol complex using immobilized cyclomaltodextrinase of akalophilic Bacillus sp. KJ 133 Kwon, H.;H. Jung;H. Kwak
  12. Carbohydr. Res. v.334 Investigation of inclusion complexation of paclitaxel by cyclohenicosakis-(1→2)-(β-D-glucopyranosyl), by cyclic-(1→2)-β-D-glucans(cyclosophoraosas), and by cyclomaltoheptaoses (β-cyclodestrins) Lee, S.;D.-H. Seo;H.-W. Kim;S. Jung https://doi.org/10.1016/S0008-6215(01)00178-1
  13. J. Microbiol. Biotechnol. v.11 Inclusion complexation of a family of cyclosophoraose with indomethacin Lee, S.;C. Kwon;Y. Choi;D.-H. Seo;H.-W. Kim;S. Jung
  14. Annu. Rev. Microbiol. v.46 Exopolysaccharides on plant-bacterial interactions Leigh, J. L.;D. L. Coplin https://doi.org/10.1146/annurev.mi.46.100192.001515
  15. Science v.231 Osmotic adaptation by Gram-negative bactia: Possible role for periplasmic oligosaccharides Miller, K. J.;E. P. Kennedy;V. N. Reinhold https://doi.org/10.1126/science.3941890
  16. J. Bacteriol. v.170 Phosphoglycerol substituents present on the cyclic β-(1→2)-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol Miller, K. J.;R. S. Gore;A. J. Benesi
  17. E. Coli. J. Microbiol. Biotechnol. v.9 Characterization of the β-cyclodextrin glucanotransferase gene of Bacillus firmus var. alkalophilus and its expression Park, T.;H. Shin;Y. Lee
  18. Plant Mol. Biol. v.6 Rhizobial lipo-oligosaccharides answers and questions Spaink, H. P.
  19. J. Org. Chem. v.43 Rapid chromatographic technique for preparative separations with moderate resolution Still, W. C.;M. Kahn;A. Mitra https://doi.org/10.1021/jo00408a041
  20. FEMS Microbiology Lett. v.35 Selective synthesis of polysaccharides by Rhizobium trifolii, strain TA-1 Zevenhyizen, L. P. T. M. https://doi.org/10.1111/j.1574-6968.1986.tb01496.x