DOI QR코드

DOI QR Code

An Efficient Fingerprint Classification using Gabor Filter

Gabor 필터를 이용한 효율적인 지문분류

  • Published : 2002.02.01

Abstract

Fingerprint recognition technology was studied by classification and matching. In general, there are five different classifications left loop, right loop, whore, arch, and tented-arch. These classifications are used to determine which class an individual's fingerprint belong to, thereby identifying the individual's fingerprint pattern. The result of this classification, which is sent to the large fingerprint database as an index, helps reduce the matching time and enhance the accuracy of fingerprint matching. The existing fingerprint classification method relies on the number and location of cores and delta points called singular points. The drawback of this method is the lack of accuracy stemming from the classification difficulty involving unclear and/or partially-erased fingerprints. The current paper presents an efficient classification method to rectify the problem associated with identifying Singular points from unclear fingerprints. This method, which is based on Gabor filter's unique characteristics for magnifying directional patterns and frequency range selections, improves fingerprint classification accuracy significantly. In this paper, this method is described and its test result is presented for verification.

지문인식 분야는 크게 지문의 분류(classification)와 정합(matching)으로 연구되고 있다. 분류는 일반적으로 좌제상문, 우제상문, 와상문, 궁상문, 솟은궁상문 등 크게 5종류로 나누며, 특정인의 지문이 어떤 분류에 속하는 지를 결정하는 것은 대형지문 데이터베이스에서 인덱스로 사용하여 매칭 시간의 단축과 정확도를 높여 주는데 있다. 기존의 지문분류는 특이점이라 불리는 핵과 삼각점의 개수 및 위치에 의한 분류방법이 주를 이루고 있는데, 이러한 방법은 지문분류의 정확성이 떨어지고, 특히 품질이 나쁜 지문이나 부분지문 등에서는 분류가 어려워 정확성이 더욱 떨어지는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위해서, 품질이 나쁜 지문이나 부분지문가지도 방향성과 주파수 선택력이 강한 Gabor 필터의 특징을 이용하여 지문분류의 정확성을 향상시킬 수 있는 효율적인 방법을 제안하고 실험을 통하여 이를 증명하고자 한다.

Keywords

References

  1. E. R. Henry, 'classification and uses of fingerprint,' London : rout-ledge, 1900
  2. B. G. Shelock and D. M. Monro, 'A model for interpreting fingerprint topology,' pattern recognition, Vol.26, No.7, pp. 1047-1055, 1993 https://doi.org/10.1016/0031-3203(93)90006-I
  3. A. K Jain, Salil Prabhakar, Lin Hong, 'A multichannel approach to fingerprint classification,' IEEE transaction on pattern analysis and machine intelligence, Vol.21, No.4, April, 1999 https://doi.org/10.1109/34.761265
  4. Raffaele Cappelli, Alessandra Lumini, Dario Maio, Darid Malton 'fingerprint classification by directional image partitioning,' IEEE trans on pattern analysis machine intelligence, Vol.21, No.5, 1999 https://doi.org/10.1109/34.765653
  5. K. Karu and A. K. Jain, 'fingerprint classification,' pattern recognition, Vol.29, No.3, pp.389-404, 1996 https://doi.org/10.1016/0031-3203(95)00106-9
  6. L. Hong and A. K. Jain, 'classification of fingerprint images,' technical report MSUCPS ; TR98-18, michigan state univ, june, 1998
  7. C. V. K. Rao and K. Black, 'type classification of fingerprints: a syntactic,' IEEE trans, pattern analysis and machine intelligence, Vol.2, No.3, pp.223-231, 1980 https://doi.org/10.1109/TPAMI.1980.4767009
  8. G. T. Candela, P. J Grother, C. I. Watson, R. A. Wilkinson, and C. L. Wilson, 'PCASYS- A pattern-level classification automation system for fingerprints,' technical report NlSTIR 5647, Apr. 1995
  9. A. P. Fitz and R. T. Green, 'fingerprint classification using hexagonal fast fourier transform,' pattern recognition, Vol. 29, No. 10, pp.1587-1597. 1996 https://doi.org/10.1016/0031-3203(96)00018-0
  10. M. Kamijo, 'classifying fingerprint images using neural network: deriving the classification state,' proc, third int'l conf, neural network, pp.1932-231, 1996 https://doi.org/10.1109/ICNN.1993.298852
  11. M. M. S. Chong, T. H. N Gee, L. jun and K. L. Gay, 'geometric frame work for fingerprint classification,' pattern recognition, Vol.30, No.9, pp.1475-1488. 1997 https://doi.org/10.1016/S0031-3203(96)00178-1
  12. C. J Lee and S. D. Wang, 'fingerprint feature extraction using Gabor filters,' electronic letters, Vol.35, No.4, pp.288-290, 1999 https://doi.org/10.1049/el:19990213
  13. Y. Hamamoto, S. Uchimura, M. Watanabe, T. Yasuda, Y. Mitani and S. Tomita, 'A Gabor filter based methode for recognizing handwritten numerals,' pattern recognition, Vol. 31, No.4, pp.395-400 https://doi.org/10.1016/S0031-3203(97)00057-5