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On Delay-Dependent Stability of Neutral Systems with Mixed
Time-Varying Delay Arguments

JH. Park

Abstract - This paper focuses on the asymptotic stability of a class of neutral linear systems with mixed time-varying delay
arguments. Using the Lyapunov method, a delay-dependent stability criterion to guarantee the asymptotic stability for the
systems is derived in terms of linear matrix inequalities (LMIs). The LMIs can be easily solved by various convex
optimization algorithms. Two numerical examples are given to illustrate the proposed methods.
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1. Introduction

During the decades, the stability analysis of various
neutral  delay-differential  systems has  received
considerable attention (see Gopalsamy [5], Hale and
Verduyn Lunel [7], and references therein). The theory of
neutral delay-differential systems is of both theoretical
and practical interest. For a large class of electrical
networks containing lossless transmission lines, the
describing equations can be reduced to neutral
delay-differential equations; such networks arise in high
speed computers where nearly lossless transmission lines
are used to interconnect switching circuits. Also, the
neutral systems often appear in the study of automatic
control, population dynamics, and vibrating masses
attached to an elastic bar. In the literature, several
analysis techniques such as Lyapunov technique,
characteristic equation method, or state solution approach
have been utilized to derive stability criteria for
asymptotic stability of the systems. Depending on whether
the stability criterion itself contains the delay argument as
a parameter, the developed stability criteria are often
classified into two categories, namely delay-independent
criterta and delay-dependent criteria. In the literature,
many delay-independent sufficient conditions for the
asymptotic stability of neutral delay-differential systems
are presented by many researchers (Chen [3], Hale et al.
[6], Hu and Hu [8], Hui and Hu [9], Kuang et al. [12],
Li [13], Park and Won [15]). Also, a few delay-dependent
sufficient conditions have been exploited in Brayton and
Willoughby [2], Khusainov and Yun'’Kova [10], and Park
and Won [16]. In general, delay-independent criteria are
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very conservative. This limits the applicability of
delay-independent stability results. Above all, the
time-delay considered in these works is constant and their
results are only applicable to the systems with same delay
arguments.

In this paper, the stability analysis for neutral
delay-differential systems with mixed time-varying delay
arguments is considered. Then, the goal of this paper is to
find the delay-dependent criterion for asymptotic stability
of the system using the Lyapunov method. In most of
previous works, the stability criteria are expressed in
terms of the matrix norm and matrix measure of system
matrices. Unfortunately, the matrix norms and matrix
measure operations usually make the criteria more
conservative. However, the stability criterion derived in
this paper will be expressed in terms of LMIs to find the
less conservative criterion. The solutions of the LMIs can
be easily solved by various effective optimization
algorithms (Boyd et al. [1]).

Through the paper, the following notations are used.
R" denotes 7 dimensional Euclidean space, R"*” is
the set of all nxm real matrices, [ denotes identity
matrix of appropriate order, and > denotes the
symmetric part. || -] and () denote the induced
matrix 2-norm and corresponding matrix measure,
respectively. The notation X> Y (respectively, X=>Y),
where X and Y are matrices of same dimensions, means
that the matrix X— Y is positive definite(respectively,
positive semi-definite).

2. Problem Formulation and Main Results

We are interested in the following linear systems of
neutral type with mixed time-varying delay arguments
described by:
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x(H) = Ax(H) + Bx(t— (1)) + C x(¢t— h(?)), 1
with the initial condition function

W+ 0)=¢(0), V 8 [—p,0] @

B and

C € R™" are constant real matrices, 7(#) and A({) are
positive time-varying bounded delays satisfying

where x(#) = R" is the state vector, A,

oD < ry <1
WD < hy <1, 3)

0 <(8) <t <o,

0 Ch(H) <h <o,
po=max{ r, &}, and ¢( -) is the given continuously
differentiable function on [— p,0]. In the paper, the
matrix A+ B is assumed to be a Hurwitz matrix. For the
basic theory of various neutral systems, the reader is
referred to the books by Hale and Verduyn Lumel [7].
Here, the goal of this paper is to find the delay-dependent
criterion for asymptotic stability of the system using
Lyapunov method with LMI technique.

Before we develop our main result, we introduce an
inequality (Moon [14]), which is necessary to establish
the criterion.

Assume that a(@)e R™, Wa)e R™ and Ne R™™
are defined on the interval Q. Then, for any positive

definite Xe R™ ™,

Ye R™ ™ and for any symmetric matrix We R
satisfying

matrix and for any matrix

n,X 7y

%5 =
the following inequality holds:
-2 [ 6™(a) N"ala)da
= L[58 S M o] e
< L1668 ([ S 5[ o W) e
=L Ty Y58

Then the following theorem gives a delay-dependent
criterion for asymptotic stability of the system (1).
7, and  hy , the
system (1) is asymptotically stable for any time-delays
(D and A(§) satisfying (3), if there exist »X » matrices
P>0, @0, R0, X>0, Z=0, and an nX#n matrix
Y satisfying the following LMIs:

Theorem 1: For given scalars p,

'Qll ‘QIZ 913

X Ly £p

AP,QX, Y, 2)= <0

)

and

[X Y

¥ 0ol g

where the entries of the symmetric matrix Q( « ) are

Q1 = PA+ATP+oX+ Y+ YT+ pATZA+ R+ ATQA
0y, = PB-Y+pA"ZB+ ATQB

13 = PC+pATZC+ATQC

Q4 = oB"ZB—(1— t)R+B7QB

Q4 = poBTZC+ BTQC

Q5 = oCTZC+CTQC—(1— 1)Q. )

Proof: Choose a legitimate Lyapunov functional (7] for
the system (1) as

V= V1+ V2+ V3+ V4 (8)
where

Vi = x7(§) Px(d) ©)

V, = f_ot(t) ft:BxT(a)Zic(a)dadB (10)

V, = ftt_m)xT(a)Rx(a)da (11)

Vi= [ (@Qa)da (12)

where the positive definite matrices P, @, R and the
positive semi-definite matrix Z are to be found later, and
recall that we are assuming (6).

Now, taking the time derivative of ¥, we obtain

V= V,+ V,+ V,+ V7, First, from (9), we have

Vi= xT(OPx(H) + x () P x(1). (13)
Since (1) can be rewritten as
W)=(A+Bx()-B[  iada
+ Cx(t—h(D), (14)
we obtain
i =2 (OMA+Bx() -2 (9PB [, ia)da
+2x (D PC x(t— (D)
(15)

In order to apply the inequality (4) to the second term
of right-hand side of (15), let

a(@)=x(8), ¥ a)= x(a), N=PB,
W=~ t)Z V asl[t— r, 4.
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Then, we have

{
T )
~2x° (%) PBf;-z(;) x{ @) de

= f:—m)[ ;cg;)) [i( (I;:%lj’,’ [ fcgg)] da

= [ I OXe()+227() (Y= PB) ()
+(1- 7 (D Z ) )da
= Dx (D Xx(H) +2xT(H(Y— PB) f:_rm (@) de

-t . )
+ (-7 [, F(@ZKade. (16)
Using the inequality (16), a new bound of 7 is

¥, <2xT() P(A+ B)x() + o Hx (D Xn( D
+227() (Y= PB) [, a)da
+2x7(8) PC x(t— h(1))
+(1- -z'd)f;_r(t) ¥ (@) Z ¥ @) de

<xT(D(ATP+PA+ Y+ YT+ pX)x()
+1- 7 [ @Zda)da

—2x1() (Y~ PB)x(t— ()
+2xT(8 PC x(t— h(D). 17

Next, from (10)-(12), we obtain the time derivative of
Vo, Vi3 and Vj as:

Ve =) x"(DZ (D)
—(1- () ft—z(l) %) Z x(a)da
<oxTNZHD—-(U- 7)) [ F(@ZHa)da

= o[ Ax(8) + Bx(t— «(£) + C x(t— (D)) ZL Ax(2)
+Br(t— (D) + Cx(t— h(D)]

(- 7o f:vm () Z x(a) da (18)
Vs = (D Re() — (1 — ()" (¢— A D) Rx(t— (1))
< 2TOR(D— (1~ z)x(t— A DIRx(t— (D) (19)
Vi = 2T(DQx(D

~ (1= k() 2(1= h(8) Q x(t~ ()
<xT(DQx(D—~(1— ha) x"(t— (D) Qx(t— h(£))
=[Ax(D+ Bx(t— o)) + C x(t— H())]7Q
- LAx(8) + Bx(t— o(§)) + C x(t— i(D)]
— (1= hy) x7(t— (D) Q x(t— h(D) (20)

Using (17)-(20), we have
V= Vl+ V2+ V3+ V4
< x"(DAP,Q R X, Y, 2) (1) @1)

where 7(8) = [x7()x(t—o(8) x (t— (I
Therefore, V is negative if the LMI conditions (5) and
(6) hold, which guarantees the asymptotic stability of the

system (1) [7]). This completes the proof.

Remark 1: Most of the criteria for asymptotic stability
of neutral delay-differential systems are expressed in
terms of matrix norm or matrix measure of the system
matrices. Unfortunately, the matrix norm operations
usually make the criteria more conservative. Also the
criteria in recent studies (Chen [3], Hu and Hu [8], Hui
and Hu [9], Li {13]), require strong assumptions such as
the matrix measures of system matrices have to be
negative. These assumptions often make it difficult to
apply the criteria to various neutral systems.

Remark 2: For stability analysis of various control
systems, the following inequality given two vectors

a,b € R",
—2aTh < 5 = infyola’Xa+b7X "'}

has been widely used. In this case, the upper bound of

(—2aTb), a™Xa+ bTX ~'b is always greater than or
equal to zero. Therefore, if (—2a74) < 0, the upper
bound 7 is not a good estimate. So, the inequality given
in (4) is utilized to obtain a good estimate [14].

Remark 3: In order to solve the LMIs given in
Theorem 1, we can utilize Matlab's LMI Control Toolbox
(Gahinet et al. [4]), which implements state-of-the-art
interior-point algorithms, which is significantly faster than
classical convex optimization algorithms (Boyd et al. [1]).

To illustrate the usefulness of the proposed method,
we present the following examples.

Example 1: Consider the following neutral system with
time-invariant delays

(D)= Ax(D + Bx(t—2)+ C x(t—2)

where

Az[—g -é] B:[(l) é] C:[Oéz 0(.)3]

By solving the LMIs given in (5) and (6), we obtain
the solutions of the LMIs as

P [6.6413 4.3362] Q:{z.ows 1.3761]
ey

- e Slown el

[*0:2356 —020093]’ Z:[0:7997 0:5645]'

This implies the system is asymptotically stable for the
time-invariant  delays. However, note that since
#(A)=0.0811>0 , the criteria of Li [13] and Hu and
Hu [8] are not applicable for this system.
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Example 2: Consider the following system:

=[O0} Bso- o] 83 O 5o

where it is assumed that the time derivative of delays
A# and h(f) are bounded as 0.25, ie., 7,=0.25 and

By iteratively solving the LMIs (5) and (6) of Theorem 1
with respect to o, an upper bound on o that guarantees the
asymptotic stability of the above system is 1.529. This implies
the system is stable under the time delays, o{()<1.529 with

HH<0.25 and A(H<1.529 with A(#<0.25. Note

that  since p(A)+HBH+—l%ﬂJ-=1.2488>O, the

criteria of Hu and Hu {8] and Li [13] cannot be used to
determine the stability of the system.

3. Conclusion

In this paper, a delay-dependent stability criterion for
asymptotic stability of a class of neutral systems with
mixed time-varying delay arguments has been proposed
using the Lyapunov method. The criterion is expressed in
terms of linear matrix inequalities, which can be easily
solved by various convex optimization algorithms. Finally,
two numerical examples are illustrated the proposed
results, and gives that our obtained result is Iess
conservative.
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