DOI QR코드

DOI QR Code

EXCHANGE RINGS SATISFYING STABLE RANGE CONDITIONS

  • Chen, Huanyin (DEPARTMENT OF MATHEMATICS, ZHEJIANG NORMAL UNIVERSITY) ;
  • Chen, Miaosen (DEPARTMENT OF MATHEMATICS, ZHEJIANG NORMAL UNIVERSITY)
  • Published : 2002.05.01

Abstract

In this paper, we establish necessary and sufficient conditions for an exchange ring R to satisfy the n-stable range condition. It is shown that an exchange ring R satisfies the n-stable range condition if and only if for any regular a $\in$ R$^n$, there exists a unimodular u $\in$$^n$ R such that au $\in$ R is a group member, and if and only if whenever a$\simeq$$_n$b with a $\in$ R, b $\in$ M$_n$(R), there exist u $\in$ R$^n$, v $\in$$^n$ R such that a = ubv with uv = 1. As an application, we observe that exchange rings satisfying the n-stable range condition can be characterized by Drazin inverses. These also give nontrivial generalizations of [7, Theorem 10], [13, Theorem 10], [15, Theorem] and [16, Theorem. 2A].

Keywords

References

  1. P. Ara, Strongly ${\pi}$-regular rings have stable range one, Proc. Amer. Math. Soc. 124 (1996), 3293-3298. https://doi.org/10.1090/S0002-9939-96-03473-9
  2. P. Ara, Extensions of exchange rings, J. Algebra 197 (1997), 409-423. https://doi.org/10.1006/jabr.1997.7116
  3. P. Ara, K. R. Goodearl, K. C. O'Meara, and E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math. 105 (1998), 105-134. https://doi.org/10.1007/BF02780325
  4. P. Ara, G. K. Pedersen, and F. Perera, An infinite analogue of rings with stable range one, J. Algebra 230 (2000), 608-655. https://doi.org/10.1006/jabr.2000.8330
  5. V. P. Camillo and H. P. Yu, Stable range one for rings with many idempotents, Trans. Amer. Math. Soc. 347 (1995), 3141-3144. https://doi.org/10.2307/2154778
  6. M. J. Canfell, Completion of diagrams by automorphisms and Bass' first stable range condition, J. Algebra 176 (1995), 480-504. https://doi.org/10.1006/jabr.1995.1255
  7. H. Chen, Elements in one-sided unit-regular rings, Comm. Algebra 25 (1997), 2517-2529. https://doi.org/10.1080/00927879708826002
  8. H. Chen, Exchange rings, related comparability and power-substitution, Comm. Algebra 26 (1998), 3383-3401. https://doi.org/10.1080/00927879808826347
  9. H. Chen, Exchange rings with artinian primitive factors, Algebra Represent. Theory 2 (1999), 201-207. https://doi.org/10.1023/A:1009927211591
  10. H. Chen, On m-fold stable exchange rings, Comm. Algebra 27 (1999), 5639-5647. https://doi.org/10.1080/00927879908826780
  11. H. Chen, Generalized stable exchange rings, SEAMS Bull. Math. 24 (2000), 19-23. https://doi.org/10.1007/s10012-000-0019-4
  12. H. Chen, On stable range conditions, Comm. Algebra 28 (2000), 3913-3924. https://doi.org/10.1080/00927870008827065
  13. H. Chen, Regular rings with the finite stable range, Comm. Algebra 29 (2001), 157-166. https://doi.org/10.1081/AGB-100000791
  14. H. Chen and F. Li, Exchange rings having ideal-stable range one, Science in China (Series A) 44 (2001), 580-586. https://doi.org/10.1007/BF02876706
  15. R. Guralnick and C. Lanski, Pseudosimilarity and cancellation of modules, Linear Algebra Appl. 47 (1982), 111-115. https://doi.org/10.1016/0024-3795(82)90228-2
  16. R. E. Hartwig and J. Luh, A note on the group structure of unit regular ring elements, Pacific J. Math. 71 (1977), 449-461. https://doi.org/10.2140/pjm.1977.71.449
  17. E. Pardo, Comparability, separativity, and exchange rings, Comm. Algebra 24 (1996), 2915-2929. https://doi.org/10.1080/00927879608825721
  18. T. Wu and Y. Xu, On the stable range condition of exchange rings, Comm. Algebra 25 (1997), 2355-2363. https://doi.org/10.1080/00927879708825995

Cited by

  1. A CRASH COURSE ON STABLE RANGE, CANCELLATION, SUBSTITUTION AND EXCHANGE vol.03, pp.03, 2004, https://doi.org/10.1142/S0219498804000897
  2. A general vectorial Ekeland’s variational principle with a P-distance vol.29, pp.9, 2013, https://doi.org/10.1007/s10114-013-2284-z
  3. Monotone type operators in nonreflexive Banach spaces vol.2014, pp.1, 2014, https://doi.org/10.1186/1687-1812-2014-119