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1. Introduction (Basovich, 1979; Basovich, Bahanov and Talanov, 1982).
More details of the wave behavior were revealed, for

Surface wave propagation in the presence of large scale example the existence of the forerunner of the internal
currents was considered in numerous works (Philips, 1966; ~Wwave, the decrease of the period of the surface wave

Craik, 1985; Kwak, 1999). The nonuniformity of the surface envelope in the zone of periodic short waves. The
current can be conditioned by a variable depth, long kinematics of the wave packets behavior and effect of wind

internal or surface waves, tides, etc. Most papers deal with ~ stresses in energy balance of surface motion were analyzed

the geometrical optics approximation, which is associated in more detail.

with the first terms of Stokes expansion in the wave Cornelis and Van (1999) recently carried out Benjamin-Feir

steepness x=ak (a and k are typical wave amplitude instability analysis of surface waves in the presence of

and number) and with a condition of a constant wave variable current.

frequency w= const, which corresponds to the stationary The modification of nonlinear Schrodinger equation for

pattern of wave-current interaction. Most intriguing property the envelope of surface waves in the presence of internal

of the solutions here is the possibility of waves reflection in Ve where considered by Stocker and Peregrine (1999).

the blockage points, where the wave propagation is blocked Variations of length and wave number of surface waves

by the opposite current. where assumed to be relatively small compared to changes
Several models (Gerber, 1986; Shugan and Voliak, 2000)

include into consideration the nonlinear properties of surface

of amplitude and so carrier wave and envelope can be
introduced. Presented in the work analysis is valid for the

. . . of main far fr bl i ith
waves and as a result have the behaviour of interaction range Dh i pfaramfeters ar Ombe ocksge p?mtj wi
very different from the linear waves modulation. Most strong changing of surface wave number and amplitude.
. . . . . The work (Semenov and Shugan, 1997) was devoted to
interesting solutions describe commected nonlinear surface ] )
. . . . the linear nonstationary model. It was shown there that
wave packets propagating with phase velocity of internal . . . L . . )
. . . moving points of discontinuity occur in the time dynamics
waves. But stationary character of solution can not give an . . .
of the wave number function. More detailed analysis was

given in Voliak, Lossov and Lossov (1992). The type of
singularity in the evolution of the amplitude and the wave

answer to a very important question about stability and
realization of such kind of wave phenomena.

Thus the necessi of considering the nonstationary

. ty & . number were found out. The found solution was typical of

modelis apparent. Series of works were made on the subject . :

the zones of zero surface wave amplitude, when the water

surface becomes absolutely flat.

AAAL o] AF QABA : FFFAA FF AT 375 This paper is devoted to the analysis of nonlinear and
062-230-7075 kijalee@chosun.ac.kr nonstationary model. We constricted our attention to the
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problem of interaction between surface and internal waves
in the ocean.

The second-order nonlinear approximation with respect to
ak to the nonstationary initial Cauchy’s problem is
considered for the following reasons. The first and obvious
one is to extend the area of applying the model for greater
ak (steep waves). The second reason is related to a very
irregular character of the solution in the first approximation.
As shown by Voliak and Shermenev (1998), there are two
kinds of singularity in evolution of Cauchy’s data (ag k).

This fact contradicts our physical intuition and, therefore,
we hope to improve the situation while considering the
terms of higher order in wave steepness. The last part of
interest connected with nonstationary nonlinear waves packet
dynamics and realization of some special regimes predicted
by stationary models.

2. Statement of Problem

We construct the model of the internal waves effect on
propagation of the narrow-band weakly nonlinear packet of
gravity surface waves based on the following assumptions:

(1) surface and internal waves propagate along a common
X -direction;

(ii) the characteristic length of surface waves is much
shorter than the scale of internal wave;

(iii) the depth of an oceanic pycnocline or a layer of
maximum background current shear much exceeds the
surface waves length, thus the internal wave in the
upper layer of a homogeneous (by density) fluid is
presented by a horizontal current varying along the
direction ¥ and reproducing internal wave shape;

(iv) wvertical displacement of particles has a negligible
impact on internal waves manifestation (Philips, 1966);

(v) long internal waves disperse weakly, therefore, the
current horizontal velocity in the subsurface layer is

set as the traveling wave U(X=ct), where ¢ is the
phase velocity of the internal wave
Let us consider the one-dimensional Cauchy problem for
the surface gravity waves dynamics with wave number k
and frequency on the nonuniform current U in an infinjtely
deep fluid. The wave propagation in the moving with phase
velocity ¢ of internal wave frame of reference is governed
by the equation of phase conservation (subscripts stand for
partial differentiation)

kit w,=0, M

together with the equation of energy conservation

2 2

( kai/z )t“"[ :1/2( 2:1/2 +v(x)) =0, @
and the initial conditions

k(x,0) = ky= const ,

a(x,0)=ay= const, ©)

here @ is the wave amplitude, a/=\/jg, and g is the
gravity-caused acceleration. The key element of the analysis
is taking into account the effects of the so-called amplitude
(quadratic) wave dispersion together with the weak surface
current. In this case the dispersion relation has the form

w= ak ”2<1 +4 azkz) + o (2) @

wx)=—c+elU (x) ©)

where U(x) is the velocity of the submarine current, and
e= U(x)/c is a small parameter. Experimental data usually
weakness  of
compared with the phase speed of internal wave U(x)/c <<
1.

confirmed a relative subsurface current

Equations (1) and (2) after substitution of (4) and (5)
present a couple of quasilinear equations for the functions
k(x, 1), a(x, t) which should be solved with initial conditions
(3). We will investigate these equations using the series
expansions with respect to e.

3. Reduction and Scaling of the
Governing Equations

Substituting new variables
2
=k, A=—% ©6)

which have the
frequency and wave action, into the nonlinear dispersion

physical meaning of reduced wave

equation (4) one can have

w=aQ(l+éAQS )+Q_2[—c+eU(x)]. "

As was mentioned, it is appropriate to seek solution to
set (1), (2) in the form of expansion in terms of the small
parameter ¢,

.Q:;QO+.§21€+9282+“'+Qm€m+...,
A=Ag+A e+ A+ + A"+, ®)
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where £, and A, are unknown functions of x and ¢.

Let us put down our set as the coupled system of linear
differential equations

QutanlutapAt QoU'(x)=0

&
2
Ayt an@ it anh i +eAU (0)=0, ©)

where the coefficients are given by expansions

a = aO,','(AO , .Qo) + Cll,'j(Ao , .Q(), Al’ .QI)E 4o
(10)

+arg'(A0v'QO»"'vArn:-Q7;z)6m+"'

The first-order (in the absence of current) solutions
2(x,» and Ay(x,f) are constant and, therefore, 4% are

constant, too. We express them explicitly as

011:%,9071+7A090 C, alz—“Z'*.Qg,
6121:7%90_2140, dozzzbg‘,.gg_l_c (11)

Let A; and A, be the eigenvalues of the matrix oY%

u

(characteristic velocities of the solution to system, (9)),
(0, 8) and (£,5 be its left eigenvectors. These
eigenvectors can be chosen so that /=1 and further

denoted as (1,L}) and (1,L%).

The characteristic polynomial of the system takes on the
quadratic form

2 3 A o’ =2
P(A)=A" | €% +EQ°A°_ZC A+TQO

7o o 3o

3 Ay — oy —22%€ Q“AO 1)
The roots of (12) are
=L 3L gla—ev 1V (13)

with the determinant
2 2
a a

2= giai -4 oA, (14)

By using the eigenvelocities A1 and A2 we introduce
new independent variables

x—At
A=Ay ’ A=Ay

(15)

Some useful transformations with scaling (15) are listed
below,

x=1x + A%, t=x +x,

(a.\'l _ax: )’

(A0, + A9, ).

dy=——
T -,

1

9=
PSR

(16)

3.1. Second-order solution

Multiplying the first equation of system (9) by Li (i = 1,
2) and adding it to the second one we get in the first order
in g,
Q, + LAy +(af, + L'ad) ), +(aly + Lady ) 4y, ==L AU (x) - %QOU'(X)

(17)

From (15), we derive the set

; WPV
(i +ra) =4y (x)—EQOU (x). 19)

Integrating these equations, we have the system for
determining the second-order solutions (1 and A,

Q +14, = ;(L‘Ao—-—QO){U (Ax + 5%, ) U[(lz—l,)xz]},

Q +124, = %(—LZAO -20, ]{U 1+ A1 )= U (A= Az ) ]}
2

19
Let us determine the constants «; as follows:
«l4y-10
Q; = [ 2 0 (20)
. 1 a 1L2 _ aszl N
= (L*— LY ( 2 A U(x)
2 Zt)]
- 1 @
A=TTy ( o 2/19 )U( 0= o
CZIL /Zt)]
Therefore, the perturbations induced by a suddenly

arising weak nonuniform current in the wave action and
frequency of a surface gravity wave with initially constant
parameters are generally presented in the second approxi-
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mation by three disturbances proportional to the current:
one is immediately fixed to the current, while two others
propagate at their own(if real) characteristic velocities A,
and 2, from the region of the current. Signs of these
disturbances are completely defined by the eigenvalues 4,
and A,, if these are real. The case of complex A, and 2,
should be analyzed separately.

Let us now consider the immobile wave of elevation,
which is connected with the current. The coefficients at U(x)
in both formulas (21) are of the greatest importance to us.
Their signs define whether the immobile wave becomes
longer or shorter and whether its wave action grows or
becomes smaller. When the eigenvelocities are complex
(which is physically more important) we have the following
cases.

(i) If
3(a+2aAOQS)

4Q,

c>

’ 22)

the coefficients at U(x) in the formula (21) are positive and
it means that the wave action grows and the wave becomes
shorter.

(i)

00— 004y 3(er+2004,95 )
<<
2Q, 4Q,

’ (23)

then the wave action itself becomes smaller and the wave
itself becomes shorter.
(iii) In the case of a comparatively small phase velocity ¢

o —aA,Q)

<
‘T, (24)

The wave action decreases and the wave becomes longer.
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Fig. 1 Domains of real (R} and complex (C) characteristic
velocities

4. Types of Solutions

As was mentioned before, the behaviour of 2, and A,
critically depends on the characteristic velocities A, and A,

of outcoming disturbances. As will be shown in Sec. 5, the
sign of the real part of A1p determines the direction of
wave propagation. If the velocities are real, then 2, and A
are regular and bounded functions of x and t. If they are
complex, we have only two disturbances instead of three.
One of them is steady and bounded while the other (it
depends on the type of the current) is going away from the
internal wave location and growing in time. The detailed
behavior of Qi and Ay is discussed in the following
sections. Now we decompose the positive orthant of the (2
o, Ag) plane into two parts R and C, where A; and A» are
real and complex, respectively. Displacement of regions R
and C are presented at fig. 1.

The border of domain R (a set, where /= () is given
by two curves defined by expressions
2
Ay= 25

From the condition «2£%<] it follows that Q3<1, and
thus it can be seen that the domain C is of the most
important. There velocities A, , are complex. The sign of
their real part is important. It determines the direction of
wave propagation. The condition of group resonance define

surface wave components that accompany the internal

waves:

o 3o 4
=t — AL,
“Tag, (26)

which mean that the phase velocity of internal wave c is
equal to the nonlinear group velocity of surface waves (g

= a/200+3a/ 4A093). For relatively short surface waves

1
c>cg+5\/Z, @)

where A

eigenvelocities A1 are negative and, therefore, both waves

is detuning from the group resonance, the
of elevation move to the left. When
1 1
c,——VA< L’<cg+—\/K,
2 2

(28)

the radiated waves run to the opposite from the current. If
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the phase velocity c is small enough,

1
C<Cg—5\/z, (29)
both waves travel in the same direction to the right from
the current.

5. Examples of the Wave Evolution

Now we will focus our attention on the Gaussian profile
of the current

U(x) = exp(— B%x?), (30)

where B is constant, while in the following examples
BY?= 0.11/m. This form of subsurface current can be initiate
by the typical solitary internal wave with the same shape
and phase speed. Now let us illustrate the modes of surface
wave modulation and main effects of internal wave impact
on the sea surface.

5.1 Real eigenvelocities

Steep surface waves form three disturbances of the same
form. One of them is steady while the other two move with
the velocities A, and A,. Direction of propagation is
defined by difference between linear group velocity of
internal

surface waves and phase velocity of waves:

a Q5 2—c.

If 1,550, then both waves move to the right and form
the forerunner of the internal wave at the sea surface. This
case is presented in fig. 2 for the parameters Q5=10,86
(AR2y) "*=0,61m, and

ak=053. Wave action is shown in Fig. 2a, while
the frequency is graphically presented in Fig. 2b. As can be
seen from formula (13), the eigenvelocities are positive when
the phase velocity ¢ is small enough.

If A, and A, have opposite signs, then the waves run

rad/m, c=0.5m/s. The wave

steepness

to the opposite sides from the current. When the phase
velocity ¢ is high enough, both 2: and A» are negative.
The waves run to the left from the current and represent
the tail of the internal wave.

5.2 Complex eigenvelocities

We have found the wave motion in domain of the plane
(9,,A, to differ critically from that in domain R, as was
predicted. First, the real part of is the velocity of the two
disturbances that are connected everywhere on the x axis.
Thus, instead of three disturbances we have only two, as

was predicted in Sec. 5.1. Second, the amplitude of this

A a
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Fig. 2 Wave evolution for positive eigenvelocities
c=0.5m/sec, @4 =0.86 rad/m, (A,2,) *=0.61 m

moving increases in time. The second-order solutions 0,

and A, are shown on fig3 for the initial data 2%=1.0

rad/m, (4,9 *=0.32m, and c¢=3,0m/s. The wave
steepness is here «k=0.32. Then linear group velocity of
relatively short surface waves is less then the phase velocity
of internal waves ¢, so nonlinear wave packet is moving
back from the current front. Internal wave propagation is
also accompanied by steady surface wave packet and

connected with it.

6. Conclusions

Nonlinear nonstationary model of modulation of surface
wave field by large scaled internal waves shows a variety
of modulation modes for different component of surface
waves. Nonlinearity of surface waves and its steepness play
a dominant role in the formation of sea surface disturbance.

Three wave packets arise for steep surface waves: one is
connected with the internal wave and reproduce its form on
the sea surface, and the two others form the forerumner or
tail of it in dependence on the relation between the
corresponding velocity c; of the linear group of surface

waves and phase velocity ¢ of the internal wave.
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Fig. 3 Time evolution for complex eigenvelocities
Qy=1,0rad/m (A,Qy)"*=0.32m, c=3.0m/s. Curve (1)
corresponds to =12 sec, (2) —t=24sec, (3) —36sec

(4) —48sec. The wave steepness is here ak=0.32

Gently sloping surface waves also form wave disturbance
over the current and nonlinear running wavepacket, with
amplitude increasing in time. If the group velocity is larger
than the phase velocity of internal wave, the moving
disturbance forms a forerunner, otherwise it is a tail of the
internal wave. Thus we have shown that there is no
blockage of waves, though the wave amplitude increases in
time.

Movement of surface wavepackets is defined in the mean
order by their linear group velocities. Thus, components that
are moving with the internal wave speed order accompanied
it within a relatively long time and are most visible at the

sea surface in the region of subsurface current.
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