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On the Time-Mean Drift Force
Acting on a Floating Offshore Structure in Waves
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ABSTRACT: Formulation of the far-field method for the prediction of time-mean hydrodynamic force and moment acting on a 3-D
surface-piercing body in waves is reviewed. It is found that the inequality between the weight of the floating body and its buoyancy
force permits the replacement of the fluid particles inside the control suiface by the fluid particles outside the control surface. Under
such circumstances, momentum exchanges across the control surface make the time-mean value of the time rate of the momentum of the
fluid inside the control surface non-vanishing. It is a second-order quantity which is hard to calculate by the far-field method. The drift
forces and moments on half-immersed ellipsoids are calculated by both the far-field method and the near-field method. The discrepancy

between two numerical results is presented and discussed.
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The near-field method

J

A solid body is oscillating in the free surface F of deep

water under gravity and in the presence of plane

With the usual
assumptions of the incompressible fluid and irrotational flow

progressive sinusoidal incident waves.
without capillarity, the fluid velocity 7 can be given by the
gradient of a velocity potential @.

2=vo (A1)

The mean position of the floating body is assumed to be
fixed by some externally applied mechanism . By making
use of the perturbation analysis, @ and the motions of the
floating body can be developed in powers of ¢ which is,

for example, as small as the wave slope:

0=c0® + 0P + OE)+ (A2)
2=eaV + &2a® + o)+ (A3)
0=c60 + 07 + 0e’)+ - (Ad)

where the terms with superscripts (1) and (2) denote the
first-order and the second-order quantities respectively and
the powers of & are to be absorbed into the real quantities.
The potential and the floating body motions are expressed
in the space-fixed reference frame (xyz)with the origin (
in the waterplane W of the body at its mean position and
z axis vertically upwards. We denote the exact wetted
surface of the body expressed in the space-fixed reference
frame by S. The wetted surface of the body in its static
equilibrium condition when it is floating in the undisturbed

water surface z =0 is denoted b S,. The origin 0 Is

Ela

AR 7

)

ks 13

fuc)

EFE

taken as the mean position of the center of the rotation of
the body. The first-order, the second-order and the
higher-order terms in (A2), (A3) and (A4) are assumed to
be purely sinusoidal in time.

V=4 ta e tae (AS5)
o7 —a; e +as e + as e
(A6)

6y e1 + 6, e + 05 e

where a,(k=1,2,,,6) denote amplitude of first-order

surge, sway, heave, roll, pitch and yaw motions respectively.
They can also be expressed as follows :

a, = ay cosw t+ ay sinw ¢
* o k¥ —iwt (A7)
Re{( ay + 1ay ) e it } s

k=1,2,,.6

where @ denotes the circular frequency of the first-order
incident waves.

I

vz
coincides

We need also another set of axes (x )say the
body-fixed which with the
space-fixed reference frame when the body is in its mean

reference frame,

position. We denote the exact wetted surface of the body
expressed in this reference frame by S’.

The position vector of a point M on S’ expressed in the
body-fixed reference frame is as follows :

——

A(M) = xy € + yu' el + 2y e, MonS (A8

It can also be expressed in the space-fixed reference frame
as follows :

r(MSZxMz;+yM?2+zM_e_;,,MonS (A9)
The latter can further be expressed as follows :
(M= M5+ a® + 67 x 7 (M)
(A10)
+Q » (M) + O(”) + -
(M) = xy' e+ v’ e+ 2n' & (a11)

The matrix @ on the right-hand side of (A10) denotes
the rotation matrix which carries out angular transformation
of a vector from its expression in the body-fixed reference

frame into that in the space-fixed reference frame when
| 67| is small :
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[ —(at+dd)/2 0 0 ]
Q=1  aa —(di+a)/2 0 | (A12)
L ayag asag  —( ai+ad)/2 ]
It should be noted that & represents the reverse

transformation of @7 which carries out positive successive
rotations of ((e) about x,y, z axes in that order.

The position vector 7,(M) defined by (All) can be
interpreted as the zeroth order expression of TM)) in

the space-fixed reference frame.

Similarly, the perturbation expansion of a unit normal
vector 7 on S , directed into the fluid region, is

=T+ 00 X 7y + Qnp + O(e%) + - (A13)
where ;0) denotes 7 at its mean position directed into the
fluid region from .

Now, we can express any quantity ¢ on S by the
perturbation expansion of its value ¢, on S, as follows:

g =gt (r—r)- Vg

. R (A14)
=gt A- Vg +(Q 7)) Vg
where
A=aD+ D% (A15)
Thus, if gy is O(e), for example, A- vy is O(g?)
and (Q—E;) - vy is O(e).
The time averages of the second-order forces and

moments on the floating body due to the second-order
potential and body motions are null since they are assumed
to be purely sinusoidal. Therefore they will not be evaluated
here and only the quadratic terms of first-order quantities
which are O(e?) will be evaluated. Since the second-order
potential and motions will not appear in the rest of the
present analysis, the superscript (1) in the expressions of
@ W and @V will be omitted in the sequel.

The first-order boundary value problem for @ is solved
by the improved Green integral equation(Hong, 1987).

The fore part of this presentation follows that of Ogilvie
(Ogilvie, 1983).
Using Bernoulli’s equation

p:—p(%ﬁz-l—%vz-%- gz) (A16)

2

where g denotes the gravitational acceleration, the force
Fr due to the fluid pressure p acting on the wetted

surface of the body can be found :

Fr =Fs+ F¢ (A17)
Fs =:pff5 [(I+A-v+Qn -v)
o0 ,
A ) (A18)

(g + 0% ng + Qny) ds
can not involve the fluid

Since the integral over S,

pressure p above the mean water surface z2=0, an
integral of p denoted by Fe over §S, the portion of S
between the plane z= (0 and the first-order free surface
z— ¢ ={, should be added to F; so that their sum is
equivalenf to the integral of p over the entire wetted
The

elevation ¢ can be obtained from the linearized free surface

surface S wvalid to second order. first-order wave

condition :

20

é 2 on 2=0 (AL9)

é‘:,_

Then the area &S which is O(e) can be expressed as

follows:
¢
8S = fc dl fo dz (A20)

where (C denotes the waterline of the body at its mean

position.
Now, extending the fluid region to the surface
z— ¢ =1(, we can express Fg as follows:
Fg = — p;z) ds
I s (A21)

- fcﬁgdlfo;pdz

The pressure p in the inner integral is to be expanded in
oS is

expansion of p to first order will be sufficient.

accordance with (14). Since O(e), perturbation

Here, in order to simplify the perturbation expansion of

p on C, we assume that S, intersects the plane z=( at

a right angle. It follows that
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b =5+ AGE - OB G

=—pgay— pgA;— pJMl + O(?)
(A22)
=—pglay+ A; — ¢+ O(e*) + -,
M on C
where
As(M) =[a+ 0x n(M] - e
(A23)

:a3+yM01*xM02, M on C

Now the inner integral on the right-hand side of (A21)
can be evaluated as follows:

f{f b dz

¢
—pgfo [z—(&—Ay)]dz (a2

2
= —ogl & — t(&— A1

The quantity in parentheses on the right-hand side of
(A24) represents the relative wave height ¢g:

{r=1C— As

Substituting (A24) together with (A25) into (A21), we

(A25)
obtain the following expression for  [re:

Fo=—8% [ ¢} mdl+ B [ AF mdl (A26)

where the vertical component of 7, is null since we have
assumed that S; intersects the plane z=0 at a right

angle.
It can also be expressed as follows :

—_— 2 ——
Fi=pg [ (45— 55) mdl (A26b)

Further, by denoting the second term on the right-hand
side of (A26b) by F %5, we have

Fo= 55 | tiwy dit FP (A260)
where
FP = 4L fc A2 mndl (A27a)

F 5123 can further be expressed as follows by making use

of Stokes’s theorem :

=O0x[—pg(Syaz+ W, 0, — W, 8;) es ] (A27b)

=—pg( Syas + W,0, — W,0,) (0,1 — 6, ;)

where W, and W, denote moments of the waterplane area

W, = ffWdes (A28)
W= [ [ vas (A29)
and Sy, the area of the mean waterplane.

It should be noted that, in the analyses of Pinkster as
Ff? in (A26abc) is
neglected while Molin(1983) has found exactly the same
expression as (A26b) (Pinkster, 1977; Ogilvie, 1983; Molin,
1983).

Next, neglecting third-order terms, we obtain the following

well as Ogilvie, the presence of

. e
expression for Fg:

Fs =pgffsoz;5ds
+pff [(gA3+%)%)+gz_é><Zg]ds %0
tof [ {ls@n) - G+ A (5

+—%—v 17 + (gA,+ 22 at )0><n0+ngn0}

The first integral in (A30) is the zeroth-order buoyancy

force Fg)i on Sp:
F—3 ngeg (A31)

where V' denotes the displacement of the body at its mean
position.
The second first-order

integral in (A30) is the

hydrodynamic force F & " on So:

— 0g( Swaz + W,0, —

. (A32)
W, 65) e;
The third integral in
FP

(A30) is the second-order

hydrodynamic force on S;:
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FP =pffs [%UMZ- V(%q;’)]z)ods
+x[p nods]
ff (A33a)

+Bx [fpg<swa3+ W, 0, — W,0,) e;)

— 0g(8, 0, W, + 0,05 W,) e;

We see that the sum of the second and the third terms
on the right-hand side of (A33a) is the vector product of

F }}j and 0. We see also that the third term is exactly
same as F ﬁfj. Thus we have

FP = ff[lv+A V( )]no
(A33b)
+ Ox __’—pg(0103W+6263W)63
szff[lvaA V( )]noa’s
+ O [pff Ty ds) +W (A33c)

—08(6,0; W, + 9293Wy)?3

The total external force [, applied to the floating body
is

Fo=TFr+ Fg (A34)
where Fo is the gravity force applied to the mass of the
floating body :

Fo=—0gV e (A35)

We see that it just cancels out with the zeroth-order

buoyancy force Fjy D Then taking the time-mean value of

Fr and noting that the contribution of F }}i is null, the

steady drift force applied to the floating body can be found
as the sum of (A26a or b or ¢) and (A33a or b or ¢):

—_—t ——=— @ ¢
and
t —_— 1
FP =48 [ F Tmdi+ FP
- ¢
-l-pffs %UZ ngds
+pff5 [A- V( )] nods (A37)

— — ~t
+ 6x[pffs%?nods] + FP

~0g( 6,05 ‘W, + 8,6, 'W,)es

P

where the superbar followed by ¢ denotes time averaging
over a period T of the first-order motion.
We see that there is a double contribution of -FT,(? while

there is only a single contribution of F 5423 in the near-field

formulas of Pinkster and Ogilvie since F D in (A26a,b,c) is
neglected as stated previously. In the near-field formulas of
Molin, there is also a single contribution of that term since

he has neglected the F 5123 in (A33a,b,c).
We proceed calculations on the moment due to the fluid

pressure p, with respect to the origin ( of the space-fixed
reference frame :

My = Ms+ M (A38)

Ms =of [ G+ A+ Q) x
{[(1+X~V+Q75.v)(%+Lyz (A39)

+g2)] (mp + 0% np + Qup) ) ds

and
M = =85 [ eir < ma

(A40)
+ 88 [ AF > mal

Let us denote the second term on the right-hand side of

(A40) by ij. It can also be expressed as follows by
making use of Stokes’s theorem :

MF = 8% [ Afrx mal
= Pg[( W.as + nyl91 — W 92)51 (A41)
+ (Wyas + W0~ Wy 62)6:] e

Wor W, and W, denote moments of inertia of the

xx/

where

waterplane area defined as follows :

Wa= [ J, #ds (A42)
Wo= [ y Vs (A43)
W,y = f fWg xyds (Ad44)

As for ﬁ;, neglecting third-order terms, we obtain the

following expression:
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ﬁ; :pgffs 270) X%ds
0

o ffso [(gAaJr%—?)Z X mp

+gz70) X (?X%) + gz A X%) 1ds

(A45)
+pffs {[A \7( )+ v]ro><75
+(gA3+a—t)70><(?)><70)+(gA3

Ldt)),_q)x;a+gzz><(79><%)]}ds+m
Mo =g [ [ AL@wn) - & r < i

+2[(Q7) X ng + Tx(Qny) 1) ds

The first integral in (A45) is the zeroth-order buoyancy

moment M E;Oj on Sj:
MY = ogV 7ex e (A47)

where 7¢ denotes the position vector of the center of

buoyancy of the body at its mean position.

Fe=xce +yce+ Zc?a (Ad8)

The second integral in (A45) is the first-order
hydrodynamic moment M,i,13 on Sp:
M(D M(D T M(U (A49)
FYisy o0
Mp ffsu ot 7o X g ds (A50)
and M BE13 is the first-order buoyancy moment on Sj:

UMD = 0g V[ (x, 05— 2,6,+ ay) e, + (3,05

2.0, -a)) e, — gl (Wyas + W, 6 (A51)

— Wy 02) e — ( Wyas + Wey 0, — W 62) €3]

The sum of the third term and the fourth term denoted
by ﬁ@) on the right-hand side of (A45) reduces to M,Sz},
the second-order hydrodynamic force on Sj:

M(z) _ M125 + M(zﬁ (A52)

where

W—pff [A4- V( )+ v]rOXnOds

to0 < [ —roxﬁads (A53)
+ pa X ff 8t nods
and
MP=MP + MP + MP + MF (A54)
MG = — 0g0s (W, a3+ W, 6, — Wy 6,) e,
+ (W, ay+ Wy 01— Wy 0) ey ]
(A55a)
+Pg[( I/Vx d3+ I/nyel_ VVxx62)01
+ (W, ag+ Wy 01— W, 65)0:] e
MG = — 0g(Sway+ W,0,
. R (AS55b)
— W,0;)(az e, — a, ey)
MY =— 0gl 6, 05( Wy e, — W er)
. . (AB5c)
+ 0205( Wy ey — W,y e2)]
M5 = ogV{lxc 0,0,~ 5 (6 + &)y ) e
(A55d)

+ (61 B)xc |

The

Mgi can be

interpreted as the second-order

buoyancy moment on Sj.

The total external moment Jf, applied to the floating
body is

M; =M+ M; (A56)

where M, is the gravity moment with respect to the origin

of the space-fixed reference frame applied to the mass of
the floating body :

Mc = r¢xFo+ AXF+(Q7) X Fg (A57)

where 7, denotes the position vector of the center of

gravity of the body at its mean position.
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Te=xce +yces +zce (A58)

The first term in (A57) is the zeroth-order gravity moment
M(Oj
B

and it cancels out with since

xXc=2x¢ and yc = yg.

The second term in (A57) is the first-order gravity
moment M(G13 and the sum of Mfgliand MGIj is the

first-order restoring moment M}eﬂ as follows :
M,(g13 = —pgVI(zc —2¢) 0, e1+ (zc — 25) 6,

o)) — 0l (W, as+ W, 6,— W 6) e, (A59)

— (W, ag+ Wy 6, — Wy 0)) ;)

The third term in (A57) is the second-order gravity

moment Mé;2
ME;Z3 = —PgV{[xc 9192*%(5% + )yl el

(AGD)
+ 56+ B)xg e )

We see that M(GZ3 cancels out with Ml(;%i since x¢c = x¢
and yc = ye-

Then E becomes as follows:

=)

Me=MP + MP + Mo+ MP + UP

D+ Mg (A61)

The M 1(323 on the right-hand side of (A6l) is the resultant
UMD and MP

moment of reduced as follows :

M =M + Mg + Mg (A62)

Then taking the time-mean value of My and noting that
the contributions of the first-order moments are null, the
steady drift moment M, ! applied to the floatng body

can be found as follows :

S— S ¢ ¢
My = Me '+ MY + MY (A63)
—_—t = !
where M. t, My and  ME can be obtained
from the time averages of (A40), (A53) and (A62)
respectively.
1%

It should be noted that MY , the second term on the
right-hand side of (A40) is identical with the vertical
component of Mfgzl3 as shown in (A55a). Thus there is also
MP 1

a double contribution of
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