Static measurement of yield stress using a cylindrical penetrometer

  • Uhlherr, P.H.T. (Department of Chemical Engineering, Monash University) ;
  • Guo, J. (Department of Chemical Engineering, Monash University) ;
  • Fang, T.N. (Department of Chemical Engineering, East China University of Science and Technology) ;
  • Tiu, C. (Department of Chemical Engineering, Monash University)
  • Published : 2002.03.01

Abstract

A novel and simple method using a cylindrical penetrometer is being developed for the measurement of yield stress. The principle of this technique is based on the measurement of the static equilibrium of a falling penetrometer in a yield stress fluid. The yield stress is simply determined by a balance of forces acting on the penetrometer. The yield stress of Carbopol gels and $TiO_2$ suspensions has been measured using this method. The results are in reasonable agreement with the values from conventional methods. The effects of the dimensions and weight of the penetrometer have been examined. The long-term behaviour was also observed. No measurable creep was seen and equilibrium was found to be very quickly established. The cylindrical penetrometer technique promises to be a simple, quick and reliable static method for the measurement of yield stress.

Keywords

References

  1. J. Non-Newtonian Fluid Mech. v.38 Wall Effect for Spheres falling as Small Reynolds Number in a Viscoplastic Medium Atapattu, D. D.;R. P. Chhabra;P.H.T. Uhlherr https://doi.org/10.1016/0377-0257(90)85031-S
  2. J. Non-Newtonian Fluid Mech. v.59 Creeping Sphere Motion in Herschel-Bulkley Fluids: Flow Field and Drag Atapattu, D. D.;R. P. Chhabra;P.H.T. Uhlherr https://doi.org/10.1016/0377-0257(95)01373-4
  3. A.I.Ch.E. Journal v.11 Falling Cylinder Viscometer for Non-Newtonian Fluids Ashare, E.;Bird, R. B. https://doi.org/10.1002/aic.690110530
  4. Rheol. Acta v.24 The Yield Stress Myth Barnes, H. A.;K. Walters https://doi.org/10.1007/BF01333960
  5. J. Non-Newtonian Fluid Mech. v.56 A Review of the Slip (Wall Depletion) of Polymer Solutions, Emulsions and Particle Suspensions in Viscometers: Its Cause, Character, and Cure Barnes, H. A. https://doi.org/10.1016/0377-0257(94)01282-M
  6. J. Non-Newtonian Fluid Mech. v.81 The Yield Stress-a review or ' παυτα πει' -everything flows? Barnes, H. A. https://doi.org/10.1016/S0377-0257(98)00094-9
  7. Applied Rheology v.9 A Brief History of the Yield Stress Barnes, H. A.
  8. J. Non-Newtonian Fluid Mech. v.98 Rotating Vane Rheometry - a Review Barnes, H. A.;Q. D. Nguyen https://doi.org/10.1016/S0377-0257(01)00095-7
  9. J. Non-Newtonian Fluid Mech. v.72 Creeping Motion of a Sphere in Tubes Filled with Herschel-Bulkley Fluids Beaulne, M.;E. Mitsoulis https://doi.org/10.1016/S0377-0257(97)00024-4
  10. J. Fluid Mech. v.158 Creeping Motion of a Sphere through a Bingham Plastic Beris, A. N.;J. A. Tsamopoulos;R. C. Armstrong;R. A. Brown https://doi.org/10.1017/S0022112085002622
  11. J. Non-Newtonian Fluid Mech. v.70 Creeping Motion of a Sphere in Tubes Filled with a Bingham Plastic Material Blackery, J.;E. Mitsoulis https://doi.org/10.1016/S0377-0257(96)01536-4
  12. Laboratory Practice The Static Measurement of Yield Stress Boardman, G.;R. L. Whitmore
  13. Rheol. Acta v.25 Yield Stress: a Time-Dependent Property and How to Measure It Cheng, D. C-H. https://doi.org/10.1007/BF01774406
  14. J. Texture Stud. v.10 New Method for the Determination Yield Stress De Kee, D.;G. Turcotte;K. Fildey;B. Harrison https://doi.org/10.1111/j.1745-4603.1980.tb00254.x
  15. Proc. ⅩⅡth International Congress on Rheology Static Yield Stress Using a Pendulum with Cylindrical Bob Guo, J.;P.H.T. Uhlherr
  16. J. Rheol. v.33 Technical Note: The Yield Stress - An Engineering Reality Hartnett, J. P.;R.Y.Z. Hu https://doi.org/10.1122/1.550006
  17. J. Applied Physics v.25 Direct Determination of the Flow Curves of Non-Newtonian Fluid: Ⅲ - Standardised Treatment of Viscometric Data Krieger, I. M.;S. H. Maron https://doi.org/10.1063/1.1721523
  18. J. Non-Newtonian Fluid Mech. v.63 Yield Stress Measurement with the Vane Liddell, P. V.;D. V. Boger https://doi.org/10.1016/0377-0257(95)01421-7
  19. J. Rheol. v.29 Direct Yield Stress Measurement with the Vane Method Nguyen, Q. D.;D. V. Boger https://doi.org/10.1122/1.549794
  20. Proc. Ⅹth International Congress on Rheology 2 Yield Stress Measurements with the Falling Needle Viscometer Park, N. A.;T. F. Irvine;F. Gui
  21. J. Non-Newtonian Fluid Mech. v.34 Steady Shear Viscosity Measurements of Viscoelastic Fluids with the Falling Needle Viscometer Park, N. A.;Y. Cho;T. F. Irvine https://doi.org/10.1016/0377-0257(90)80028-X
  22. Building Materials Reiner, M.
  23. Rheol. Acta v.40 New Measurements of the Flow-Curves for Carbopol Dispersions without Slip Artefacts Roberts, G. P.;H. A. Barnes https://doi.org/10.1007/s003970100178
  24. Rheol. Acta v.29 The Yield Stress - An Empirical Reality Schurz, J. https://doi.org/10.1007/BF01332384
  25. Elementary Rheology Scott Blair, G. W.
  26. J. Rheol. v.45 A Slotted Plate Device for Measuring Static Yield Stress Zhu, L.;N. Sun;K. Papadopoulos;D. De Kee https://doi.org/10.1122/1.1392299
  27. Proc. $4^{th}$ National Conference on Rheology A Novel Method for Measuring Yield Stress in Static Fluids Uhlherr, P.H.T.
  28. Proc. Engineering Foundation Conference Yield Stress of Concentrated Mineral Suspensions from Static Equilibrium Measurements with Various Geometries Uhlherr, P.H.T.;J.Z.Q. Zhou;J. Guo;T. Fang
  29. Min. Pro. Ext. Met. Rev. v.20 Determination of Yield Stress from Initiation of Motion on an Inclined Plane Uhlherr, P.H.T.;T. Fang;Z. Zhou https://doi.org/10.1080/08827509908962465