A new motion-based segmentation algorithm in image sequences

연속영상에서 motion 기반의 새로운 분할 알고리즘

  • 정철곤 (성균관대학교 전기전자 및 컴퓨터공학부 디지털신호처리연구실) ;
  • 김중규 (성균관대학교 전기전자 및 컴퓨터공학부 디지털신호처리연구실)
  • Published : 2002.03.01

Abstract

This paper presents a new motion-based segmentation algorithm of moving objects in image sequences. The procedure toward complete segmentation consists of two steps: pixel labeling and motion segmentation. In the first step, we assign a label to each pixel according to magnitude of velocity vector. And velocity vector is generated by optical flow. And, in the second step, we have modeled motion field as a markov random field for noise canceling and make a segmentation of motion through energy minimization. We have demonstrated the efficiency of the presented method through experimental results.

본 논문에서는 연속영상에서 움직이는 객체의 motion에 기반하여 영상을 분할하는 새로운 알고리즘을 제안하였다. 전체적인 분할 과정은 2단계로 구성되어진다. 첫 단계는 '픽셀 레이블링' 단계이며, 두 번째 단계는 'motion 분할' 단계이다. '픽셀 레이블링' 단계에서는 optical flow에 의해 발생하는 속도 벡터들의 크기에 따라 영상의 각 픽셀에 레이블을 부여한다. 'Motion 분할' 단계에서는 첫 단계에서 생겨난 불필요한 잡음을 제거하기 위해 motion 필드를 마코프 랜덤 필드로 모델링하여 에너지 최소화를 통해 motion을 분할한다. 실험결과, 제안된 알고리즘이 연속영상에서 움직이는 객체의 motion을 효율적으로 분할함을 확인할 수 있었다.

Keywords

References

  1. IEEE trans. on image processing v.6 Simultaneous motion estimation and segmentation M. M. Chang;A. M. Tekalp;M. I. Sezan
  2. Image and Vision Computing v.19 Moving object segmentation in video sequences by user interaction and automatic object tracking M. Kim;J. G. Jeon;J. S. Kwak;M. H. Lee;C. Ahn
  3. Signal Processing v.76 Spatiotemporal MRF approach to video segmentation: Application to motion detection and lip segmentation F. Luthon;A. Caplier;M. Lievin
  4. Artificial Intelligence v.17 Determining optical flow B. K. P. Horn;B. G. Schunck
  5. Signal detection & estimation M. Barkat
  6. Ad Oculos Ditital image processing H. Bassmann;P.W. Besslich
  7. ICAPRDT'99 Determination of number clusters in K-means clustering and application in colour image segmentation S. Ray;R. H. Turi
  8. Machine vision R. Jain;R. Kasturi;B. G. Schunck
  9. Central European Seminar on Computer Graphics Reconstruction of tomographic data by markov random fields M. Zimanyi
  10. Pattern Recognition Proceedings, 10th International Conference v.1 MRF model-based algorithms for image segmentation R. C. Dubes;A. K. Jain;S. G. Nadabar;C. C. Chen
  11. IEEE trans. on circuits and systems for video technology v.9 An efficient two-pass MAP-MRF algorithm for motion estimation based on mean field theory J. Wei;Z. Li
  12. Korean Institute of Communication Sciences v.26 Automatic segmentation of non-rigid object in image sequences C. Jung;J. K. Kim;C. Ahn
  13. IEEE Trans. Circuits and Systems for Video Technology v.9 A VOP Generation Tool: Automatic Segmentation of Moving Objects in Image Sequences Based on Spatio-Temporal Information M. Kim;J. G. Choi;D. Kim;H. Lee;M. H. Lee;C. Ahn;Y. S. Ho
  14. Korean Institute of Communication Sciences v.26 Automatic segmentation of moving object using automatic region growing algorithm C. Jung;K. S. Kim;J. K. Kim
  15. Signal Processing: Image Communication v.7 Bayesian algorithms for adaptive change detection in image sequences using Markov random fields T. Aach;A. Kaup
  16. 한국통신학회 추계종합학술발표회 논문집 no.12-12 마코프 랜덤 필드를 이용한 움직이는 객체의 자동분할 정철곤;김중규