초록
자켓 행렬(Jacket matrix)은 왈쉬 하다마드(Walsh Hadamard) 행렬 구조를 바탕으로 확장한 행렬이다. 왈쉬 하다마드 행렬이 +1, -1을 기본 원소로 하고 있는 반면 자켓 행렬은 $\pm$1과 $\pm$$\omega$($\pm$j, $\pm$$_2$$^{n}$ )를 각각 원소로 가질 수 있다. 이 행렬은 중앙 부근에 무게(weight)를 갖는데, 하다마드 행렬 크기의 1/4 크기로 부호 부분과 무게 부분으로 구성된다. 본 논문에서는 기존에 행렬 중앙에 강제적으로 무게를 할당하여 자켓 행렬을 구성하였으나, 어떠한 크기의 행렬도 크기와 무게만 정해주면 생성해낼 수 있는 이진 인덱스를 이용한 간단한 비트열 형태의 일반식이 제시된다. 무게는 행과 열의 이진 인덱스의 최상위 두 비트를 Exclusive-OR 연산한 결과가 1인 원소에 부여된다. 또한 분산연산(Distributed Arithmetic:DA) 알고리즘을 이용한 고속자켓변환(Fast Jacket Transform)의 VLSI 구조를 제시한다. 자켓 행렬은 cyclic한 특성을 가지고 있어서 암호화, 정보 이론 및 WCDMA의 복소수 확산 QPSK 변조부에 응용될 수 있다.
The jacket matrix is based on the Walsh-Hadamard matrix and an extension of it. While elements of the Walsh-Hadamard matrix are +1, or -1, those of the Jacket matrix are ${\pm}$1 and ${\pm}$$\omega$, which is $\omega$, which is ${\pm}$j and ${\pm}$2$\sub$n/. This matrix has weights in the center part of the matrix and its size is 1/4 of Hadamard matrix, and it has also two parts, sigh and weight. In this paper, instead of the conventional Jacket matrix where the weight is imposed by force, a simple Jacket sequence generation method is proposed. The Jacket sequence is generated by AND and Exclusive-OR operations between the binary indices bits of row and those of column. The weight is imposed on the element by when the product of each Exclusive-OR operations of significant upper two binary index bits of a row and column is 1. Each part of the Jacket matrix can be represented by jacket sequence using row and column binary index bits. Using Distributed Arithmetic (DA), we present a VLSI architecture of the Fast Jacket transform is presented. The Jacket matrix is able to be applied to cryptography, the information theory and complex spreading jacket QPSK modulation for WCDMA.