A VLSI Architecture for the Binary Jacket Sequence

이진 자켓 비트열의 VLSI 구조

  • 박주용 (서남대학교 전기전자멀티미디어공학부) ;
  • 이문호 (서남대학교 전기전자멀티미디어공학부)
  • Published : 2002.02.01

Abstract

The jacket matrix is based on the Walsh-Hadamard matrix and an extension of it. While elements of the Walsh-Hadamard matrix are +1, or -1, those of the Jacket matrix are ${\pm}$1 and ${\pm}$$\omega$, which is $\omega$, which is ${\pm}$j and ${\pm}$2$\sub$n/. This matrix has weights in the center part of the matrix and its size is 1/4 of Hadamard matrix, and it has also two parts, sigh and weight. In this paper, instead of the conventional Jacket matrix where the weight is imposed by force, a simple Jacket sequence generation method is proposed. The Jacket sequence is generated by AND and Exclusive-OR operations between the binary indices bits of row and those of column. The weight is imposed on the element by when the product of each Exclusive-OR operations of significant upper two binary index bits of a row and column is 1. Each part of the Jacket matrix can be represented by jacket sequence using row and column binary index bits. Using Distributed Arithmetic (DA), we present a VLSI architecture of the Fast Jacket transform is presented. The Jacket matrix is able to be applied to cryptography, the information theory and complex spreading jacket QPSK modulation for WCDMA.

자켓 행렬(Jacket matrix)은 왈쉬 하다마드(Walsh Hadamard) 행렬 구조를 바탕으로 확장한 행렬이다. 왈쉬 하다마드 행렬이 +1, -1을 기본 원소로 하고 있는 반면 자켓 행렬은 $\pm$1과 $\pm$$\omega$($\pm$j, $\pm$$_2$$^{n}$ )를 각각 원소로 가질 수 있다. 이 행렬은 중앙 부근에 무게(weight)를 갖는데, 하다마드 행렬 크기의 1/4 크기로 부호 부분과 무게 부분으로 구성된다. 본 논문에서는 기존에 행렬 중앙에 강제적으로 무게를 할당하여 자켓 행렬을 구성하였으나, 어떠한 크기의 행렬도 크기와 무게만 정해주면 생성해낼 수 있는 이진 인덱스를 이용한 간단한 비트열 형태의 일반식이 제시된다. 무게는 행과 열의 이진 인덱스의 최상위 두 비트를 Exclusive-OR 연산한 결과가 1인 원소에 부여된다. 또한 분산연산(Distributed Arithmetic:DA) 알고리즘을 이용한 고속자켓변환(Fast Jacket Transform)의 VLSI 구조를 제시한다. 자켓 행렬은 cyclic한 특성을 가지고 있어서 암호화, 정보 이론 및 WCDMA의 복소수 확산 QPSK 변조부에 응용될 수 있다.

Keywords

References

  1. N.Ahmed and K.R.Rao, Orthogonal Transforms for Digital Signal Processing, Berlin, Germany: Springer-Verlag, 1975
  2. M. H. Lee, 'A New Reverse Jacket Transform and Its Fast Algorithm,' IEEE, Trans. On Circuit and System, vol. 47. no. 1, Jan. 2000
  3. M. H. Lee, 'The complex Reverse Jacket Transform,' 22nd Information Theory and Its Application SITA, Japan Niigata, Nov.31 Dec. 3, 1999
  4. M. H. Lee, J. Y. Park and S. Y. Hong, 'A Simple Binary Index Generation for Reverse Jacket Sequence,' In Proceedings of 2000 International Symposium on Information Theory and Applications (ISITA 2000), vol. 1, pp.329-433, Hawaii, USA, Nov. 5-8, 2000
  5. M. H. Lee and M. Kaveh, 'Fast Hadamard transform based on a Simple Matrix Factorization,' IEEE Trans. ASSP-34, (6), pp.1666-1667, 1986
  6. M. H. Lee and Y. Yasuda, 'Simple Systolic Array for Hadamard Transform,' Electronics Letters. vol. 26 no.18 pp 1478-1479, 30th August 1990 https://doi.org/10.1049/el:19900949
  7. M. H. Lee, 'A New Reverse Jacket Transform based on Hadamard Matrix,' ISIT2000.2000 IEEE International symposium on Information Theory, Sorrento (Italy), June 25-30 2000
  8. M. H. Lee, 'Fast Complex Reverse Jacket Transform,' Accepted to IEEE, Trans. on CAS-II
  9. M. H. Lee, 'The Center Weighted Hadamard Transform,' IEEE, Trans. on Circuit and System, vol.36. no. 9, pp 1247-1249, Sept.1989 https://doi.org/10.1109/31.34673
  10. S. R. Lee and M. H. Lee, 'On the Reverse Jacket Matrix for Weighted Hadamard Transform,' IEEE, Trans. on Circuit and System, vol. 45. no. 3, pp 436-441, Mar. 1998 https://doi.org/10.1109/82.664258
  11. M. H. Lee, B. S. Rajan, and J. Y. Park, 'A Generalized Reverse Jacket Transform,' IEEE Trans. Circuits Syst. II, vol.48, no. 7, pp.684-690, July 2001 https://doi.org/10.1109/82.958338
  12. H. Jia and M. H. Lee, 'nalysis of Relative Difference Set Correlated with Cocyclic Jacket Matrix for Cryptography,'Submit to WISA2001, The 2nd International Workshop on Information Security Application, Sept. 13-14, 2001, Seoul, Korea
  13. M. H. Lee, 'A New Complex Spreading Jacket QPSK Modulation for WCDMA,' International Workshop on Information Coding Technology, pp.41-64, July 3-July 4, 2001, Chonju, Korea
  14. 유경주, 홍선영, 이문호, 정진균, '고속자켓변화의 VLSI 아키텍쳐,' 2001 신호처리합동학술대회논문집, vol. 14, no. 1, Sept. 22, 2001.
  15. H. J. and M. H. Lee, 'Polynomial Representation of Extending Hadamard Transform,' Proceedings of the 4th MDMC'01, June 11-12, 2001, Pori, Finland, pp.412-416
  16. H. Jia., M. H. Lee and J. S. Kim, 'Low Density Parity Check Codes with a Code for Iterative Decoding,' Proceedings of the 4th MDMC'Ol, June 11-12, 2001, Pori, Finland, pp.59-65
  17. K. Parhi, VLSI Digital Signal Processing Systems Design and Implementation, John Wiley & Sons, Inc. USA, 1999
  18. S. Rahardja and B. J. Falkowski, 'Family of Unified Complex Hadamard Transforms,' IEEE Trans. Circuits and Systems II:Analog and Digital Signal Processing. Vol 46. No8, Aug, 1999
  19. L. Chang and M. Chang, 'A bit level systolic array for Walsh-Hadamard Transforms,' Signal Processing Vol 31, pp341-347, 1993 https://doi.org/10.1016/0165-1684(93)90091-N
  20. S. Y. KUNG, VLSI Array Processors, Prence Hall, USA, 1988
  21. K.Parhi, VLSI digital signal processing systems Design and implementation, John Wiley & Sons, Inc. USA, 1999
  22. A. Amira, A. Bouridane and P. Milligan, 'An FPGA based Walsh Hadamard transforms,' ISCAS 2001. The 2001 IEEE International Symposium on, Vol 2, pp. 569 -572. 2001