Abstract
This paper presents a MSB-first digit-serial systolic array for computing modular multiplication of A(x)B(x) mod G(x) in finite fields $GF(2^m)$. From the MSB-first multiplication algorithm in $GF(2^m)$, we obtain a new data dependence graph and design an efficient digit-serial systolic multiplier. For circuit synthesis, we obtain VHDL code for multiplier, If input data come in continuously, the implemented multiplier can produce multiplication results at a rate of one every [m/L] clock cycles, where L is the selected digit size. The analysis results show that the proposed architecture leads to a reduction of computational delay time and it has much more simple structure than existing digit-serial systolic multiplier. Furthermore, since the propose architecture has the features of unidirectional data flow and regularity, it shows good extension characteristics with respect to m and L.
본 논문에서는 유한 필드 GF(2")상에서 모듈러 곱셈 A(x)B(x) mod G(x)를 수행하는 MSB 우선 디지트 시리얼곱셈기를 설계하였다. 이를 위하여 GF(2")상에서 MSB 우선 곱셈 알고리즘으로부터 자료 의존 그래프를 구하고, 이를 이용하여 효율적인 디지트 시리얼 시스톨릭 곱셈기를 설계한다. 설계된 곱셈기에 대한 VHDL 코드를 구하고 시뮬레이션을 거친 후 FPGA 로 구현한다. 구현된 곱셈기는 디지트의 크기를 L로 설정했을 경우 연속적인 입력 데이터에 대해 [m/L) 클럭 사이클 비율로 곱셈의 결과를 출력한다. 본 연구에서 구현된 곱셈기를 기존의 곱셈기와 비교 분석한 결과 시간 및 공간 복잡도가 감소되었으며, 간단한 구조로서 데이터 처리 지연시간을 줄일 수 있다. 또한 본 연구에서 제안한 구조는 단 방향의 신호 흐름 특성을 가지고 있으며, 매우 규칙적이기 때문에 m과 L에 대해 높은 확장성을 가진다.