DWT를 이용한 영상압축을 위한 경계화소의 효과적인 처리방법

An Effective Method to Treat The Boundary Pixels for Image Compression with DWT

  • 서영호 (광운대학교 전자재료공학과 Digital Design & Test 연구실) ;
  • 김종현 (광운대학교 전자재료공학과 Digital Design & Test 연구실) ;
  • 김대경 (한양대학교 응용수학과) ;
  • 유지상 (광운대학교 전자공학과) ;
  • 김동욱 (광운대학교 전자재료공학과 Digital Design & Test 연구실)
  • 발행 : 2002.06.01

초록

2차원 이산 웨이블릿 변환(2D-DWT)을 이용한 영상처리에서 영상의 경계부분 화소들을 처리하는 방법은 영상의 화질과 구현비용에 영향을 미친다. 본 논문에서는 하드웨어 및 소프트웨어 구현에 적합하고 화질의 손실이 거의 없는 효과적인 경계화소 처리방법을 제안하였다. 이 방법은 2차원 영상을 1차원 배열로 처리하는 방법으로, DWT 진행방향에 따라 영상을 직렬의 연속적인 데이터구조로 간주하고 DWT를 수행(Serial-Sequential Processing)한다. 제안한 방법의 성능 및 구현의 용이성을 보이기 위하여 영상을 압축하고 복원하는 영상압축 코덱을 구현하여 실험하였다. 여기에는 로그-스케일의 고정 양자화기를 사용하였으며, 엔트로피 코더는 구현하지 않았다. 실험결과 압축률 2:1 이상의 경우(엔트로피 코딩을 제외한 압축율) 주기적 확장(Periodic Expansion, PE)방법과는 거의 동일한 SNR(Signal to Noise Ration)을 보였으며, 대칭적 확장(Symmetric Expansion, SE)방법에 비해서는 15.3%, 0-화소 삽입(Zero-Padding Expansion, ZPE)방법에 비해서는 9.6% 높은 SNR을 보였다. 또한 주기적 확장방법은 본 논문의 방법에 비해 12.99%의 메모리가 더 필요하였으며, 영상의 압축동작만을 고려할 때 제안한 방법에 비해 SE 방법과

In processing images using 2 dimensional Discrete Wavelet Transform(2D-DWT), the method to process the pixels around the image boundary may affect the quality of image and the cost to implement in hardware and software. This paper proposed an effective method to treat the boundary pixels, which is apt to implement in hardware and software without losing the quality of the image costly. This method processes the 2-D image as 1-D array so that 2-D DWT is performed by considering the image with the serial-sequential data structure (Serial-Sequential Processing). To show the performance and easiness in implementation of the proposed method, an image compression codec which compresses image and reconstructs it has been implemented and experimented. It included log-scale fried quantizer, but the entropy coder was not implemented. From the experimental results, the proposed method showed the SNR of almost the same SNR(Signal to Noise Ratio) to the Periodic Expansion(PE) method when the compression ratio(excluding entropy coding) of 2:1, 15.3% higher than Symmetric Expansion(SE) method, and 9.3% higher than 0-pixel Padding Expansion(ZPE) method. Also PE method needed 12.99% more memory space than the proposed method. By considering only the compression process, SE and ZPE methods needed additional operations than the proposed one. In hardware implementation, the proposed method in this paper had 5.92% of overall circuit as the control circuit, while SE, PE, and ZPE method has 22%, 21,2%, and 11.9% as the control circuit, respectively. Consequently, the proposed method can be thought more effective in implementing software and hardware without losing any image quality in the usual image processing applications.

키워드

참고문헌

  1. Digital Compression for Multimedia, Principles and Standards J. D. Gibson(et al.)
  2. Wavelet Transforms, Introducation to Theory and Applications R. M. Rao;A, S. Bprardikar
  3. IEEE Trans. on VLSI Systems v.4 no.4 VLSI Implementation of Discrete Wavelet Transform A. Grzezczak(et al.) https://doi.org/10.1109/92.544407
  4. Technical paper of Analog Devices The Advantages of Wavelet Techniques in Video Capture David Starr;Kevin Leary
  5. ISO/IEC JTC1/SC29 WG1 JPEG 2000 Part 1 Final Draft International Standard Martin Boliek(et al.)
  6. IEEE Trans. on Consumer Electronics v.45 no.3 Wavelet Image Compression for Mobile/Portable Applications M. Ravasi(et al.) https://doi.org/10.1109/30.793608
  7. IEEE Trans. on Circuits and Systems for Video Technology v.11 no.4 An Efficient Architecture for Two-Dimensional Discrete Wavelet Transform Po-Cheng Wu;Liang-Gee Chen https://doi.org/10.1109/76.915359
  8. Signal Proc. v.20 Reflected Boundary Conditions for Multirate Filter Banks J. N. Christoper(et al.)
  9. Signal Proc. v.17 Extension of Finite Length Signals for Sub-band Coding G. Karlsson;M. Vetterli https://doi.org/10.1016/0165-1684(89)90019-4
  10. Length -preserving Wavelet Transform Algorithm or Zero-padding and Linearly-extended Signals K. McGill;C. Taswell
  11. IEEE Trans. on Signal Processing v.48 no.5 Handling Borders in Systolic Archtectures for the 1-D Discrete Wavelet Transform for Perfect Reconstruction Macro Ferretti;David Rizzo https://doi.org/10.1109/78.839983