초록
잡음 예측 최대 유사도(noise predictive maximum likelihood, NPML) 검출기는 잡음 예측/백색화 과정을 비터비 검출기의 가지 메트릭 계산 과정에 삽입하여 데이터 검출의 신뢰성을 높이게 된다. 따라서 기존의 PRML 검출기에 잡음 예측기를 포함시킴으로써 그것의 실제 성능이 향상되고 복잡도가 줄어드는 이점이 있다. 본 논문에서는 선형 채널과 비선형 채널 하에서 랜덤 시퀀스와 런-길이 제한 (1,7) 시퀀스를 적용하여, 고밀도 수직 자기 기록 (1.7$\leq$K$_{p}$$\leq$3.0)에서 잡음 예측 PR-등화 신호에 의한 NP(1221)ML 검출 시스템이 보다 높은 타수의 PR(12321)ML 시스템보다 복잡도가 낮으면서 우월한 성능을 나타냄을 모의 실험을 통해 분석, 검증하였다.
Noise predictive maximum likelihood(NPML) detector embeds noise predictions/ whitening process in branch metric calculation of Viterbi detector and improves the reliability of branch metric computation. Therefore, PRML detector with a noise predictor achieves some performance improvement and has an advantage of low complexity. This paper shows that NP(1221)ML system through noise predictive PR-equalized signal has less complexity and better performance than high order PR(12321)ML system in high density perpendicular magnetic recording. The simulation results are evaluated using (1) random sequence and (2) run length limited (1,7) sequence, and they are applied to linear channel and nonlinear channel with normalized linear density $1.0{\leq}K_p{\leq}3.0$.