DOI QR코드

DOI QR Code

용액성장된 ZnS 박막의 표면형상 및 양자사이즈효과

Surface Morphology and Quantum Size Effect of ZnS Thin Film Grown by Solution Growth Technique

  • 이종원 (한밭대학교 신소재공학부) ;
  • 이상욱 (한밭대학교 신소재공학부) ;
  • 조성룡 (한밭대학교 신소재공학부) ;
  • 김선태 (한밭대학교 신소재공학부) ;
  • 박인용 (한밭대학교 신소재공학부)
  • 발행 : 2002.01.01

초록

In this study, the nanosized ZnS thin films that can be used for fabrication of blue light-emitting diodes, electro-optic modulators, and n-window layers of solar cells were grown by the solution growth technique (SGT), and their surface morphology and film thickness and grain size dependence on the growth conditions were examined. Based on these results, the quantum size effects of ZnS were systematically investigated. Governing factors related to the growth condition were the concentration of precursor solution, growth temperature, concentration of aq. ammonia, and growth duration. X-ray diffraction patterns showed that the ZnS thin film obtained in this study had the cubic structure ($\beta$-ZnS). With decreasing growth temperature and decreasing concentration of precursor solution, the surface morphology of film was found to be improved. Also, the film thickness depends largely on the ammonia concentration. In particular, this is the first time that the surface morphology dependence of ZnS film grown by SGT on the ammonia concentration is reported. The energy band gaps of samples were determined from the optical transmittance values, and were shown to vary from 3.69 eV to 3.91 eV. These values were substantially higher than 3.65 eV of bulk ZnS. It was also shown that the quantum size effect of SGT grown ZnS is larger than that of the ZnS films grown by most other growth techniques.

키워드

참고문헌

  1. Z. Porada, E. Schabowska, Thin Solid Films, 145, 75 (1986) https://doi.org/10.1016/0040-6090(86)90253-1
  2. M. Yoneta, M. Ohishi, H. Saito, J. Cryst. Growth, 127, 314 (1993) https://doi.org/10.1016/0022-0248(93)90628-A
  3. A. Abounadi, M. Diblasio, D. Bouchara, Phys. Rev., 850, 11677 (1994)
  4. J.M. Dona, J. Herrero, J. Electrochem. Soc., 139, 2810 (1992) https://doi.org/10.1149/1.2068984
  5. M. Steigerwald, L.E. Brus, Annu. Rev. Mater. Sci., 19, 471 (1989) https://doi.org/10.1146/annurev.ms.19.080189.002351
  6. A.P. Alisatos, A.L. Harris, N.J. Levino, M.L. Steigerwald, L.E. Brus, J. Chem. Phys., 89,4001 (1988) https://doi.org/10.1063/1.454833
  7. P.J. Sebastian, J. Campos, P.K. Nair, Thin Solid Films, 227, 190 (1993) https://doi.org/10.1016/0040-6090(93)90038-Q
  8. I. Kaur, D.K. Pandya, K.L. Chopra, J. Electrochem. Soc., 127,943 (1980) https://doi.org/10.1149/1.2129792
  9. P.J. Sebastian, J. Campos. P.K. Nair. Thin Solid Films, 227, 190 (1993) https://doi.org/10.1016/0040-6090(93)90038-Q
  10. J. Ihanus, M. Ritala. M. Leskela, T. Prohaska. Appl. Surf. Sci., 120,43(1997) https://doi.org/10.1016/S0169-4332(97)00226-2
  11. Landolt-Bornstein Series vol. 17, subvol. b, Springer-Verlag, Berline (1982)
  12. K.L. Chopra, S.R. Das, 'Thin Film Solar Cells', Plenum Press, New York (1983)
  13. J.M. Dona, J. Herrero, J. Electrochem. Soc., 141, 205 (1994) https://doi.org/10.1149/1.2054685
  14. O.L. Arenas, M.T.S. Nair, P.K. Nair, Semicond. Sci. Tech., 12, 1323 (1997) https://doi.org/10.1088/0268-1242/12/10/022
  15. P.K. Nair, M.T.S. Nair, V.M. Garcia, O.L. Arenas, Y. Pena, Solar Energy Mater. Sol. Cells, 52, 313 (1998) https://doi.org/10.1016/S0927-0248(97)00237-7
  16. D.S. Chuu, C.M. Dai, Phys. Rev.B, 45,11805 (1992) https://doi.org/10.1103/PhysRevB.45.11805
  17. F. Bassani, G.P. Parravicini, 'Electronic States and Optical Transitions in Solids', Pergamon, Oxford (1975)
  18. T. Maruyama, T. Kawakuchi, Thin Solid Films, 188, 323 (1990) https://doi.org/10.1016/0040-6090(90)90294-N
  19. S.K. Mandal, S. Chaudhuri, A.K. Pal, Thin Solid Films, 350,209 (1999) https://doi.org/10.1016/S0040-6090(99)00236-9
  20. W. Chen, Z. Wang, Z. Lin, L. Lin, J. Appl. Phys., 82, 3111 (1997) https://doi.org/10.1063/1.366152
  21. A. Mondal, T.K. Chaudhuri, P. Prarnanik, Sol. Energy Sol Cel, 7,431 (1983) https://doi.org/10.1016/0165-1633(83)90016-3